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Executive Summary

This deliverable, namely, D4.5, is part of WP4 of the H2020 SPRING project. The aim of this document is to present
novel approaches for emotion recognition, gaze target detection, and automatic social acceptance of the robot. We
present quantitative and qualitative results of the developed approaches related to T4.3 “Multi-modal Affect and Robot
Acceptance Analysis”.

Emotion recognition describes the ability to predict a person’s emotional state in the robot’s field view. The devel-
opedmethod leverages the power of unsupervised pre-training tomitigate the domain shift problemwhen deployed in
different environments. The output of this module is a positive or negative emotion depending on the emotional state
of the person. Furthermore, we implemented a single-microphone speech emotion recognition algorithm to evaluate
the emotional state of people communicating with ARI using audio signals as well. Emotion recognition modules
have been tested on several publicly available datasets, showing their robustness against several SOTA methods.

Gaze target detection aims to predict where the person is looking. The module here presented employs a novel
end-to-end Transformer-based architecture able to simultaneously predict the object class and the location of the
gazed-object, resulting in a comprehensive, explainable gaze analysis. Upon evaluation of the in-the-wild benchmarks,
our method achieves state-of-the-art results on all metrics.

Social acceptance of the robot refers to the process of identifying and understanding the level of interaction, in-
volvement, or connection between humans and robots in a given context [32]. Our proposed method concentrates on
analyzing the gaze behavior of human agents. We leverage ARI’s gaze target detection module to extract handcrafted
features, drawing inspiration from [8], which has demonstrated promising results in analyzing multi-party conversa-
tions. Importantly, we evaluated the social acceptance module using data collected by the SPRING project in Broca
Hospital.

The modules’ source code are available in the SPRING repository1. As per European Commission requirements,
the repository will be open to the public for at least four years after the end of the SPRING project.

1https://gitlab.inria.fr/spring
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1 Introduction

This deliverable D4.5 is part of WP4 of the H2020 SPRING project, presenting the results of T4.3 “Multi-modal Affect
and Robot Acceptance Analysis”. The document presents frameworks for emotion recognition, gaze target detection,
and automatic social acceptance with qualitative and quantitative results.

Facial expressions are essential to nonverbal communication and are major indicators of human emotions. Ef-
fective automatic Facial Emotion Recognition (FER) systems can facilitate comprehension of an individual’s intention
and prospective behaviors in Human-Computer and Human-Robot Interaction. Facial masks exacerbate the occlu-
sion issue since these cover a significant portion of a person’s face, including the highly informative mouth area from
which positive and negative emotions can be differentiated. Conversely, the efficacy of FER is largely contingent upon
the supervised learning paradigm, which necessitates costly and laborious data annotation. Our study centers on
utilizing the reconstruction capability of a Convolutional Residual Autoencoder to differentiate between positive and
negative emotions. The proposed approach employs Unsupervised Feature Learning and inputs facial images of in-
dividuals with and without masks as inputs. Our study emphasizes the transferability of the proposed approach to
different domains compared to current state-of-the-art fully supervised methods. The comprehensive experimental
evaluation demonstrates the superior transferability of the proposed approach, highlighting the effectiveness of unsu-
pervised feature learning. Despite outperforming more complex methods in some scenarios, the proposed approach
is characterized by relatively low computational expense. Furthermore, our framework for emotion recognition also
incorporates information from audio-based emotion recognition, where a single-microphone speech emotion recog-
nition algorithm can estimate the emotions of people talking with ARI.

Gaze target detection aims to predict the image location where the person is looking and the probability that a
gaze is out of the scene. Several works have tackled this task by regressing a gaze heatmap centered on the gaze
location; however, they overlooked decoding the relationship between the people and the gazed objects. We propose
a Transformer-based architecture that automatically detects objects in the scene to build associations between ev-
ery head and the gazed-head/object, resulting in a comprehensive, explainable gaze analysis composed of the gaze
target area, gaze pixel point, the class, and the image location of the gazed-object. Upon evaluation of the in-the-wild
benchmarks, our method achieves state-of-the-art results on all metrics.

Social acceptance detection involves identifying and comprehending the level of interaction, involvement, or con-
nection between humans and robots within a specific context [32]. This encompasses the analysis of diverse cues,
including verbal and non-verbal communication, gestures, facial expressions, and other social signals, to assess the
extent to which a person actively engages with or responds to a robot [3]. In tackling this objective, our proposed
method focuses on scrutinizing the gaze behavior of human agents. We utilize ARI’s gaze target detection module to
extract handcrafted features inspired by [8], which has exhibited promising results in analyzing multi-party conversa-
tions.

The rest of this deliverable is structured as follows: first, we describe the framework for emotion recognition using
image and audio signals. Second, we describe the proposed module for gaze target detection, and third, we describe
the social acceptance module. We conclude this deliverable with a summary of the results of the proposed modules.
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2 Emotion Recognition

The emotion recognition module is capable of understanding the current emotional state of a person by predicting
whether the face has a positive or negative attitude. We differentiate between these two discrete values mainly be-
cause of i) data availability, that is the available datasets provide valence values which determine whether a face is
negative (unpleasant) or positive (pleasant), and ii) practicality, this scenario provides a more accessible setting for
the deep learning architecture than training on several emotional classes thus increasing the model’s performance.
Additionally, we train the proposed model on masked and unmasked faces increasing the robustness of the model
in case a masked person is approaching the robot. We decide to focus on the transferability of Facial Expression
Recognition (FER) systems due to their unsupervised feature learning capabilities which provide a more robust adap-
tation to real-world applications, that is unsupervised feature learning does not require (labeled) re-training when the
domain changes (e.g., hospital rooms, brightness), thus increasing the abilities of a robot employed in different social
scenarios. To assess this, we examine the following cross-dataset settings and validate whether:

• an unsupervised feature learning-based approach (i.e., Ours) performs better than fully supervised methods
(i.e., state-of-the-art (SOTA)) when the domains of the pre-training model and the classifier are the same, but the
testing dataset is different, and

• an unsupervised feature learning-based method (i.e., Ours) performs better than fully supervised approaches
(SOTA) when the pre-training domain is different from the domains that the classifiers are trained and tested on.

2.1 Implementation

The emotion recognition module is composed of two neural networks i) an autoencoder-based architecture used as
a feature extractor (2.1-top) and ii) the classification head responsible for classifying whether the emotion is positive
or negative (2.1-bottom).

AutoEncoder (Unsupervised pre-training). The employed Convolutional Autoencoder (AE), visualized in Fig. 2.1-top
is composed of an encoder having threemain residual blocks, each featuring three convolutions with 2D-kernels 3×1,
1× 3, 3× 1, ReLU as activation function and a max pooling operation. The input image of this network is of dimension
64× 64× 3while its output has a size of 2048. The encoder employs residual connections particularly the first layer of
each block is shared among the block itself and the skip connection, the output of the block is then summed with the
output from the skip connection. The decoder is the transpose version of the encoder employing the same structure
that takes as input the latent space from the encoder reconstructing the original image. Each decoder block uses a
transpose-convolutional layer with ReLU and batch normalization.
This model is trained with Mean Squared Error (MSE):

LMSE = 1
2EX∼B

[
∥X− X̂∥2F

]
, (2.1)

where X is the input image, and ∥ · ∥F denotes the Euclidean norm of the vector obtained after flattening the tensor
X. The MSE loss in (2.1) is minimized by using ADAM optimizer over mini-batches B and the reconstructed data are
defined as:

X̂ = Dθ ◦Eφ(X), (2.2)

The MSE loss has the learnable parameters θ, φ updated by mini-batch gradient descent, where we estimate

Ex∼B [LMSE(θ, φ)] = Ex∼B
[
∥x−Dθ(Eφ(x))∥2F

]
,

by averaging the MSE loss LMSE over the mini-batch B.
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Figure 2.1: Proposed convolutional autoencoder trained with Mean Squared Error loss (top). Downstream task; posi-
tive/negative emotion classification learned with an MLP using the features extracted from the frozen encoder of our
convolutional autoencoder trained unsupervised way (bottom).

Classification Head. Once the AE is trained with MSE, without using the labels of the data (aka unsupervised pre-
training), following the representation learning literature, we freeze the AE and use it only to extract features for the
training/testing data, which are used to train/test a linear classifier (see Fig. 2.1-bottom). The linear classifier is a
Multilayer Perceptron (MLP) composed of two layers with parametrized ReLu as the activation function, trained to
perform the classification of positive and negative emotions. The training of the MLP is performed with Focal Loss
motivated by the fact that it could be able to better handle the class imbalance problem, if any.

2.2 Datasets

We employ three in-the-wild large-scaled FER datasets supplying valence annotations. These datasets are: AffectNet,
Aff-wild2 and AFEW-VA. Notice that, FER datasets can show differences in terms of the range of the valence annota-
tions as occurring between AffectNet/Aff-Wild2 versus AFEW-VA. However, the sign of the valence (i.e., whether it is
positive or negative) is essential for FER. Given the cross-dataset analysis we perform in this study, it was necessary
for us to apply discretization to the valence scores, and perform the FER as the classification of positive and negative
emotions.

AffectNet. The AffectNet dataset is one of the largest image-based datasets for FER, including 287651 training,
and 4000 validation images annotated manually. We use the validation set for model evaluation. The images from
AffectNet have various sizes. The valence annotations have values in an interval between −1 and +1. We discretized
the valence values in the way that the values smaller than zero refer to the negative class, and bigger than zero refers
to the positive class.

Aff-wild2. The Aff-wild2 dataset is composed of 558 videos collected from Youtube including 458 subjects. The
valence values are between −1 and +1. We discretized such values as described for AffectNet.

AFEW-VA. TheAFEW-VAdataset contains 600 video clips selected frommovies including indoor andoutdoor scenes.
This dataset provides a wide spectrum of facial expressions, captured in various circumstances with natural head
pose movements, complex backgrounds, and severe occlusions. The valence annotations are per frame in a range
between −10 to 10. We discretized them such that the values smaller than zero refer to the negative class and bigger
than zero refers to the positive class.

D4.5: Emotional and robot acceptance analysis in relevant environments Page 7 of 20
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Figure 2.2: Samples of Fm images obtained by applying Anwar and Raychowdhury’s method [2] to the original un-
maksed facial images.

Dataset Source # of Training Images # of Testing Images
Unmasked Masked Total Unmasked Masked Total

1 AffectNet 143825 130205 274030 1999 1903 3902
2 Aff-Wild2 145920 105032 250952 31873 24624 56497
3 AFEW-VA 5658 7024 12682 631 781 1412

Table 2.1: Details of the datasets used in the experimental analysis.

Facial masking method. As explained earlier we increase the robustness of the system by training it on masked
and unmasked facial images. The publicly available datasets lack masked faces with valence annotations thus we
masked them using a facial masking method proposed in [2]. This method [2] provides five different mask types
(surgical, N95, KN95, cloth, gasmask), in our setting we used all of them except the gasmask. Additionally, it provides
24 different patterns with different color intensities. When masking the datasets we randomly select the mask type,
pattern, and color for each image in a dataset. We also randomly changed the intensity of the color. This resulted in
162 different facial masks. Since each mask type has multiple templates based on angle, they cover a wide range of
face tilts, resulting in accurate masked facial images [2]. Still, we applied a manual visual inspection to discard the
facial images of having themaskmisplaced. Fig. 2.2 reports some images generated by the aforementionedmethod.

Final datasets. We used the above AffectNet, Aff-wild2 and AFEW-VA datasets and the masking method [2] to build
the following datasets:

• Dataset 1: Its training and testing splits are composed of randomly selected 50% of the original (unmasked)
images of AffectNet combined with the masked images generated from the other 50% of the dataset. The
training and testing instances were kept the same as supplied by the original dataset.

• Dataset 2: After removing very similar faces (i.e., the ones appearing in the consecutive frames of the videos,
and having the same emotion type) in the video clips of Aff-Wild2 to obtain an in-the-wild image-based dataset,
we applied facial mask generation [2] to every remaining image. The instances of training and testing splits were
kept as supplied by the original dataset. We ensured that if one type of image (betweenmasked and unmasked)
appears in training, its counterpart does not appear in the test set and vice versa. Moreover, the identities across
training and testing splits are not overlapping.

• Dataset 3: We first removed the very similar faces (i.e., the ones appearing in the consecutive frames of the
videos, and having the same emotion type) in order to obtain an in-the-wild image-based dataset from AFEW-
VA. Following that, the mask generation [2] was applied to the remaining images. The facial images in which
the mask generation misplaced the mask were discarded from the group of masked images, while their original
correspondences were kept as unmasked images. Such images can be observed as relatively difficult ones, still,
we argue that rather than omitting them totally from the evaluation (which is the case SOTA applies), involving
them as unmasked images are still contributing. In that case, the same identities can appear in the training and
testing splits while the head orientation, the emotion classes, and the image types masked or unmasked for the
same identity are different.

Table 2.1 reports the sample distribution of the three datasets. Datasets 1-3 have slightly imbalanced numbers of
masked and unmasked images in the training sets. Thismight bring an additional challenge for FERmodels. However,
we did not manipulate the training splits to obtain balanced classes since imbalanced data is a frequently observed
situation in real-world (FER) applications [9].
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F1 (↑)
Method Feature Learning Dataset 1 Dataset 2 Dataset 3
Barros & Sciutti [7] supervised 48.8 26.9 75.2
ResNet50 [21] supervised 66.2 41.2 79.2
(Proposed) Know. Dist. supervised 70.3 44.1 83.8
ViT [16] supervised 38.3 29.9 58.2
ViT (w/ResNet50) [16, 29] supervised 71.0 65.7 87.7
Proposed unsupervised 58.8 46.6 95.4

Table 2.2: Evaluation of the proposed method and the SOTA on Datasets (a) 1, (b) 2, and (c) 3 in terms of F1 score.
The best results are indicated in bold and the second best results are given underlined. The symbol ↑ implies that a
higher value is preferred.

2.3 Evaluation

We adopted several fully supervised State-Of-The-Art (SOTA) methods in order to compare their efficiency and effec-
tiveness against the proposed approach. We implemented the FaceChannel [6] network with its last layer suitable for
the binary classification task (i.e., softmax), and by using the search space applied by Barros & Sciutti [7] for the num-
ber of layers and unit per layer. We implemented a knowledge distillation approach as baseline between InceptionV3
(teacher) andMobileNet (student), this gives as a comparison on a low resource usage (as the developedAutoEncoder
model). Another comparison approach is the usage of ResNet50 which is adapted by several SOTAs and, additionally,
it employs residual connections as the proposed AE giving a direct comparison. We also included the Visual Trans-
formers [16] into our comparisons. The effectiveness of the proposed method and SOTA are measured with F1-score
(F1).

Results

Even though ourmain focus is to study the transferability of the proposedmethodwith respect to other approaches, we
first report a comparative study across ourmodel and the prior art on the same-dataset setup to draw us an empirically
validated comparative method out of all SOTA (see Table 2.2). The results highlight the better performance of ViT [16]
used together with pre-trained ResNet50, on average. However, our approach surpasses ViT with ResNet50 when
tested on datasets whose scalability is relatively smaller such as the case of Dataset 3. For relatively larger datasets
such as Dataset 2, our model demonstrates the second-best performance after ViT with ResNet50 by surpassing
all other fully supervised methods. Without using pre-trained ResNet50, ViT [16] underperforms in all datasets. The
proposed Knowledge Distillation approach, overall, achieves better results compared to Barros and Sciutti [7] and
ResNet50 even though its student component is much lightweight compared to both approaches.

Cross-Dataset Analysis

The cross-dataset analysis includes two types of investigation. In the first one, we evaluate themodels’ performances
when the datasets used in the pre-training and during the training of the classifier are the same, but the classifier’s
testing dataset is different. Such experiments are relevant given that there is often a domain gap between the train-
ing/validation data and the testing domain in real-world applications. Table 2.3 reports the results of this experiment
showing that the majority of the time the proposed unsupervised feature learning-based model’s transferability is su-
perior to the proposed fully supervised knowledge distillationmodel. The only exception occurred when Dataset 1 was
used as the training dataset and the testing is performed on Dataset 3. Still, even in the further case, the performance
gap between the two models is lower than the former, i.e., the proposed unsupervised feature learning-based model
surpasses the knowledge distillation. Overall, a drop in performance is possible due to the domain gap between the
datasets. Particularly, training on either Dataset 1 or Dataset 2 significantly decreases the performance on Dataset 3
compared to both training and testing on Dataset 3.

The second type of cross-dataset analysis is to evaluate the models’ performances when the pre-training dataset
is different from the dataset the classifiers are trained and tested on. Such a setting simulates real-world applications
in which one typically has models trained on one dataset (so-called pre-trained models) but further needs to be fine-
tuned on another dataset whose distribution is the same as the testing dataset but different from the pre-training
dataset.
We evaluated the performance of the knowledge distillation model in two settings:
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Classifier
Method Feature Learning Pre-training

Dataset
Training
Dataset

Testing
Dataset

F1 (↑)

Know. Dist. supervised - 1 2 38.3
Proposed unsupervised 1 1 2 44.7
Know. Dist. supervised - 2 1 44.0
Proposed unsupervised 2 2 1 58.4
Know. Dist. supervised - 1 3 60.4
Proposed unsupervised 1 1 3 53.2
Know. Dist. supervised - 2 3 46.8
Proposed unsupervised 2 2 3 51.2

Table 2.3: Cross-dataset analysis when the testing dataset is different from the pre-training and training datasets. The
best results of each metric are given in bold. Notice that the pre-training of the proposed method is unsupervised, i.e.,
without using the labels. The symbol ↑ implies that a higher value is preferred.

Classifier
Method Feature Learning Pre-training

Dataset
Training
Dataset

Testing
Dataset

F1 (↑)

Know. Dist. (a) supervised 1 3 3 81.8
Know. Dist. (b) supervised 1 3 3 69.5
Proposed unsupervised 1 3 3 95.8
Know. Dist. (a) supervised 2 3 3 84.7
Know. Dist. (b) supervised 2 3 3 60.2
Proposed unsupervised 2 3 3 94.5

Table 2.4: Cross-dataset analysis when the pre-training dataset is different from the dataset the classifier is fine-tuned
and tested on. The best results of each metric are given in bold. Notice that the pre-training of the proposed method
is unsupervised, i.e., without using the labels. See text for the description of (a) and (b). The symbol ↑ implies that a
higher value is preferred.

• (a) The teacher model was trained on the pre-training dataset, and then the student network was trained on the
same dataset. Furthermore, the student network was fine-tuned with the classifier’s training dataset and tested
with the classifier’s test set. All layers of the student network were fine-tuned.

• (b) The teacher network was trained on the pre-training dataset, and then the student model was trained on the
same dataset. Consequently, the student network was fine-tuned with the classifier’s training dataset and tested
with the classifier’s test set. Only the last layer of the student was fine-tuned.

The corresponding results are given in Table 2.4. Herein, we used Dataset 1 and Dataset 2 in pre-training, and
Dataset 3 was used for the classifier’s training and testing. It is a common practice that model pre-training is per-
formed on relatively larger datasets. In this vein, we did not perform pre-training on Dataset 3 given that it is the
smallest dataset out of all (otherwise it is highly likely that a catastrophic forgetting would happen, therefore the
transferability cannot be studied). Also in such cases, the proposed unsupervised feature learning-based approach
surpasses the proposed knowledge distillation model for both settings (a) and (b), once again proving its better trans-
ferability. It is notable that pre-training on Dataset 1 slightly improves the results (from 95.4% to 95.8%) of our unsuper-
vised feature learning-based method with respect to the one given in Table 2.2 (i.e., the same-dataset analysis) and
pre-training on Dataset 2 improves the results of proposed knowledge distillation with respect to the same-dataset
analysis (from 83.8% to 84.7%).

2.4 Audio-based Emotion Recognition

The emotional state of the person communicating with ARI can be inferred from the audio signal as well. For that, we
have developed and implemented a single-microphone speech emotion recognition (SER) algorithm [33], which is a
variant of the system proposed in [23]. In this scheme, the acoustic features are extracted from the audio utterances
and fed to a neural network that consists of convolutional neural networks (CNN) layers, bidirectional long short-term
memory (BLSTM) combined with an attention mechanism layer [4], and a fully connected layer. The architecture
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of the proposed SER is depicted in Fig. 2.3. Feature selection constitutes a pivotal facet of developing a resilient

Figure 2.3: Architecture of the network.

emotional system. In our work, we analyze several combinations of features, such as themel-spectrogram feature and
mel frequency cepstral coefficients (MFCC). The features used for the interactive emotional dyadic motion capture
(IEMOCAP) database are described in Table 2.5.

Table 2.5: Proposed features for the IEMOCAP dataset

Feature Parameter Value Description

MFCC sr=16000, hop_length=512 Spectrogram in mel-scale
MFCC Derivative width=9, mode=‘interp’, order=1, axis=-1 Local estimates of the MFCC derivative
Spectral Centroid sr=16000, hop_length=5120 The frequency of the center of mass of the spec-

trum
Spectral Contrast sr=16000, hop_length=512 Ratio of the average power in the upper and lower

quadrants
Spectral Bandwidth sr=16000, hop_length=512 3dB Bandwidth
Spectral-roll off sr=16000, hop_length=512 Threshold frequency belowwhich a specified per-

centage of the total spectral energy lies
zero-crossing rate (ZCR) hop_length=512 Zero-crossing rate of the time-domain signal
root mean square (RMS) hop_length=512 The root-mean-square value of the signal

We evaluated our model using two popular databases, Ryerson audio-visual database of emotional speech and
song (RAVDESS) [26] and IEMOCAP [10] datasets.
Results for the RAVDESS dataset: Given the similarities between the emotions ’calm’ and ’neutral,’ and considering
that the number of utterances in ’neutral’ is only half of those in the other emotion classes, a decision was made to
merge both emotions under the label ’neutral.’ In total, the network classified the data into seven different emotions
and achieved a weighted accuracy of 80%. The results are also illustrated in the form of a confusion matrix shown in
Fig. 2.4. It is noteworthy that the classes ’happy’ and ’sad’ exhibit significantly lower accuracy compared to the other
classes.
Results for the IEMOCAP dataset: In many cases reported in the literature, only the emotions ’neutral,’ ’happiness
+ excited,’ ’sadness,’ and ’anger’ are used while training and evaluating the performance of a SER method on the
IEMOCAP dataset since these classes are balanced in the number of their utterances. The emotions ’happiness’
and ’excited’ have a certain degree of similarity, and there are too few utterances of ’happiness.’ Therefore, these
emotions are combined together to create the ’happy’ label with an approximately similar number of utterances as
the other three emotions used for evaluation. In total, the network classified the data into four different emotions and
obtained a weighted accuracy of 66%. The results are presented as a confusion matrix, as depicted in Fig. 2.5. It is
important to note that the class ’happy’ has lower accuracy than the other classes. Similar effects were reported in
the literature, and it may indicate that the ’happy’ emotion is more difficult to characterize. It remains a challenge to
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Figure 2.4: Confusion matrix of the results on RAVDESS dataset.

Figure 2.5: Confusion matrix of results on IEMOCAP dataset.

apply this algorithm to actual data recorded at the hospital.
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3 Gaze Target Detection

Gazing is a powerful nonverbal signal, which indicates a person’s visual attention and allows one to understand the
interest, intention, or (future) action of people [18]. For this reason, gaze analysis has widely been used in several
disciplines such as human-computer interaction [28, 37], neuroscience [14, 30], social and organizational psychology
[11, 17], and social robotics [1] to name a few. The proposed method [35] is an end-to-end Transformer-based architec-
ture. Given a scene image, we first extract all objects, including the ones classified as heads, with an Object Detector
Transformer. Then, for each head, a gaze vector is predicted. Using this gaze vector, we build a gaze cone for each per-
son individually, allowing the model to filter out objects not in a person’s Field of View (FoV). Subsequently, a masked
transformer (called Gaze Object Transformer) learns the interactions between the detected heads and objects, boost-
ing the gaze target detection performance in terms of both heatmaps and gaze points (i.e.a single pixel in the scene).
Furthermore, this architecture can predict whether a gaze target point is out of the frame.

Figure 3.1: Proposed method. The encoder (E) and decoder (D) of the Object Detector Transformer operate on the
features extracted by a backbone B to learn rich object features used to detect and localize objects (including heads)
in the scene. Head features are used to build the gaze cone. Objects in the cone are extremely likely to be gaze-
interesting. The object score matrix Σ boosts attention scores in the Gaze Object Transformer (GOT ), whose output
features are used to build the gaze heatmap. If no object lies in the cone, a skip-connection lets the network only
predict the heatmap from head features.

3.1 Implementation

The proposed method is shown in Fig 3.1. Given an image, we first predict the set of objects O = { (cx, cy, w, h, l)}
in it, where (cx, cy, w, h) represent the center coordinates of a single object and its width and height, respectively,
l ∈ [0, CLS) is an object’s label, and CLS is the number of classes, including a special no object (∅) class. To this end,
after extracting the image features through a backbone B, we use an Object Detector Transformer that reasons on the
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scene features with the encoder E and learns relevant object features with the decoderD. Such features differentiate
between headsOh and other objects in the scene. For each headOi

h, we feed its features to the Gaze Cone Predictor
to determine a gaze vector vi

g that represents the gaze direction of the person. This gaze vector is used to build a
gaze cone with an angle of α corresponding to the Field of View (FoV) and selectively maintain the objects inside the
cone for each head. The Gaze-Object Transformer (GOT ) models the relationships between the detected objects and
predicts the probability of them being the gaze target of any person, with a higher likelihood for the objects closer to
the gaze vector. The gaze of each person is represented as a Gaussian heatmap Hi centered on the gaze point pi

g ,
and when no object is present inside the gaze cone, we use a no cone-object skip to compute the heatmap directly
from the head features. We also use the head features to predict the probability of the gaze target being outside the
frame. To sum up, our model consists of three major components: (a) Object Detector Transformer, (b) Gaze Cone
Predictor, and (c) Gaze Object Transformer, which are described thoroughly in the following sections.

Object Detector Transformer. Given an RGB image x ∈ RC×H×W , we aim to predict the bounding boxes and labels
of objects. We start by extracting a feature map fb ∈ RCb×Hb×Wb with a convolutional backbone B. Due to the
high channel dimensionality, we linearly project the channel dimension to a lower space Cb′ . We flatten the spatial
dimensions and obtain f

′

b ∈ RHbWb×C
′
b , which is fed to a transformer encoder E that enhances the coarse image

features extracted by B. E is designed as a stack of multi-head self-attention (MHSA) and feed-forward (FFN) layers.
The projected output of B, f

′

b, forms the input queries Q, keys K , and values V of E . To retain the spatial information
of the feature map, we add positional encodings for Q and K. The output of the encoder, fe, forms the input K and
V of the cross-attention module of the transformer decoder D. D completes our Object Detector Transformer and
introduces a multi-head cross-attention module to obtain object-relevant features. First, the decoder performs self-
attention on a set of learnable embeddings ed ∈ RN×C

′
b , whereN is the maximum number of objects to be predicted.

Like E , we add the learnable embeddings ed with a set of fixed positional embeddings. The output of the self-attention
on ed is then fed to a multi-head cross-attention module, where ed are the queries, and fe are the keys and values.
The output features fd of the transformer decoder are finally used by two multi-layer perceptrons (MLP) to predict the
object bounding box (Bbox) and class, respectively.

Gaze Cone Predictor. An MLP takes as input the features of objects detected as heads Oh and estimates, for each
of them, a 3D gaze vector vi

g = (θi, ϕi, ρi). Each gaze vector uniquely identifies the orientation of the person’s gaze
with θ, ϕ, and ρ, which are the vector’s polar angle, azimuthal angle, and magnitude, respectively. For each gaze vector
vi
g , we design a 3D cone of angle α and apex (cix, ciy, ciz) representing the FoV of a person, where cix, ciy , and ciz are the

center coordinates of the head. The cone axis has the same direction as the gaze vector. The intensity of the cone,
i.e., the point saliency, is calculated as the cosine similarity between vi

g and all vectors inside the cone starting from
(cix, ciy, ciz). In the 2D case, θ is not available, and we only have one angle ϕ and the magnitude ρ for the gaze vector,
while the 2D cone is still in the center of the apex but spans only in 2D instead of 3D. We adopt the discretized space
of the same dimensionality of the predicted heatmap presented in [20], while we extend it to the 3D case, with x, y, and
z axis corresponding to the width, height, and depth of the image. For the 2D cone building, we follow the approach
of [20], but we constrain the cone to be a fixed angle α, which is in line with the FoV of human boundaries [22].

Formally, let angle(va, vb) be the absolute value of the angle between two vectors, and σ(va,vb) be the cosine
similarity between two vectors va and vb conditioned on the cone angle α:

σ(va,vb) =

{
cos (va,vb) if angle(va,vb) ≤ α

2 ,

0 otherwise
(3.1)

The projected 3D gaze cone of a person i,CDi
3D , whose head center coordinates are cix, c

i
y, c

i
z , and predicted gaze

vector vi
g , is defined as:

CDi
3D = {σ(vi

g,v
ijkl
H )}∀j, k, l ∈ [0, w)× [0, h)× [0, d) (3.2)

where w, h, and d are the width, height, and depth of the space on which the 3D cone is computed, and vi
H indicates

the vectors in the discretized space starting from (cix, c
i
y, c

i
z).

The set of 3D cones CD3D allows us to define the object score as a square matrix Σ of size N × N , where N is
the number of objects detected by the Object Detector Transformer. The object score matrix represents whether an
object is in each person’s visual cone and how close it is to their predicted gaze vector. Each row represents an object
where the rows of objects not classified as heads are zero. For rows of head objects, the score for each other object
is equivalent to the value of the gaze cone picked at the center coordinates of the object. When no object is in the
gaze cone, the corresponding row becomes zero, and then we exploit the no cone-object skip to compute the gaze
heatmap. The object score matrix Σ is used by GOT as an additive bias in the attention module. The rationale behind

D4.5: Emotional and robot acceptance analysis in relevant environments Page 14 of 20



This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 871245.

the score matrix Σ is to exploit the strong prior coming from the gaze vector and constrain the network to focus on
relevant objects in the scene.

Gaze Object Transformer A stack of MHSA and FFN layers encodes a set of learnable embeddings eg ∈ RN×C
′
b ,

where N is the number of predicted objects. Unlike the object detector transformer’s encoder, the multi-head self-
attention includes an additive bias, i.e.our object score matrix Σ. Therefore, the new attention is defined as:

BiasedAttention(Q,K, V ) = softmax
(QKT +Σ√

dk

)
V (3.3)

Additionally, we mask the learnable embeddings corresponding to objects not classified as heads. The masked fea-
tures of the self-attention of GOT are the inputs to the cross-attention module. Likewise self-attention, the cross-
attention module exploits the object score matrix as additive bias and performs binary masking on heads for Q and
other objects for K and V . We exclude objects with low confidence prediction or classified as no-object (∅).

The output features of the cross-attention form the input to the heatmapMLP to predict the gaze heatmap for each
head. However, sincewe cannot assume that an object is always present, a secondMLP (heatmap no-object in Fig. 3.1)
predicts the heatmap from head features only when no object is inside the visual cone. The outputs of heatmap MLP
and heatmap no-object MLP are fed to a gated operator that selects the heatmap based on the presence (or absence)
of objects in the cone of each person. Finally, an additional watch outside MLP, only for head objects, predicts pout,
the probability that the given head gaze lies outside the frame.

3.2 Datasets & Metrics

Our model is trained and tested on both GazeFollow [31] and VideoAttentionTarget [13] datasets. GazeFollow [31] is a
large-scale image dataset containing over 122K images in total with more than 130K people. The test images include
gaze and head location annotations performed by up to 10 people for a single person in the scene. At the same time,
the training set contains only one annotator’s judgment indicating gaze and head locations. VideoAttentionTarget [13]
is composed of YouTube video clips, each has a length of up to 80 seconds. It includes 109, 574 in-frame and 54, 967
out-of-frame gaze annotations together with the head locations. Both the training and test sets contain one gaze
annotation per person. Given that we do not use the temporal information in our model, we randomly select one image
for every 5 consecutive frames, allowing us to avoid overfitting. This setup is the same with SOTA [5, 19, 24, 34, 36].
Evaluation Metrics. We evaluate the performance of the proposed method in terms of gaze target detection and
object class detection and localization. For the former task, we use all standard metrics [12, 13] described as follows.
AUC assesses the confidence of the predicted gaze heatmap w.r.t. the gaze ground-truth. Distance (Dist.) is the L2

between the ground-truth gaze point and the predicted gaze location, which is the point with themaximum confidence
on the gaze heatmap. In GazeFollow, it is a standard to declare both theminimum and average distances. I/O gaze AP
is the average precision used to evaluate the out-of-frame probability of the gaze in VideoAttentionTarget. We use the
standard metric Mean Average Precision (mAP) for object class detection and localization. In that case, a prediction
is correct if the class label of the predicted bounding box and the ground truth bounding box are the same and the
Intersection over Union (IoU ) between them is greater than a threshold value.

3.3 Results

Our method’s gaze target detection performance is compared with the SOTA in Table 3.1. Recalling that the cropped
head images and the head locations are required for traditionalmethods (i.e., SOTAexcept [36]) and thesemethods are
evaluatedwhen the ground-truth head locations are granted (referred to as “Head GT”), we proceedwith the evaluation
procedure of [36], summarized as follows. Tu et al. [36] employ additional head detectors to automatically obtain
the head position given to the traditional models, providing their real-world application performance. We inherit the
corresponding results from [36] and refer to them as “Real”. For the methods whose “Real” results are not provided
by [36], we obtain the results using RetinaFace [15] to detect head position. However, we can perform this only for the
method whose code is publicly available: [34].

As we can see from the results, our method only with RGB data outperforms existing SOTA on all datasets for all
metrics. Such a performance is important to emphasize since several SOTA perform relatively poorly even though
they use multi-modalities [19, 24] or temporal data [13]. Notably, for VideoAttentionTarget [13] dataset, our method
achieves better scores compared to many complex methods relying on several pretrained task-specific backbones
(e.g., 2D-pose estimation) [5] or leveraging the temporal dimensionality of the data [27]. At the same time, both utilize
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RGB and depth maps. Our better performance w.r.t. Transformer-based [36] is also conspicuous. Furthermore, when
RGB and depth are considered, our method performance slightly improves on average. Recalling that we use depth
information only during gaze cone production without requiring additional (pretrained) CNN to learn depth features as
in [24, 34] or needing to detect the eyes as in [19], the corresponding results are noteworthy. Particularly, our minimum
and average distance and mAP results are always the best whether or not others were evaluated within “Head GT” or
“Real” settings. This shows that the proposed method is notably good at predicting if the gaze is located inside or
outside the frame, the gaze heatmaps, and eventually, a single pixel gaze point that our model predicts per person is
much closer to the ground truth-gaze point.

Method Modalities Multiperson
Gaze

GazeFollow [31] VideoAttentionTarget [13]
Distance ↓ In frame Out of frame

AUC ↑ Avg. Min. AUC ↑ Dist. ↓ AP ↑
Head Real† Head Real† Head Real† Head Real† Head Real† Head Real†
GT GT GT GT GT GT

Random 0.504 0.391 0.484 0.533 0.391 0.487 0.505 0.247 0.458 0.592 0.621 0.349
Center 0.633 0.446 0.313 0.495 0.230 0.371 - - - - - -
Fixed bias - - - - - - 0.728 - 0.326 - 0.624 -
Recasens et al. [31] R ✗ 0.878 0.804 0.190 0.233 0.113 0.124 - - - - - -
Chong et al. [12] R ✗ 0.896 0.807 0.187 0.207 0.112 0.120 0.830 0.791 0.193 0.214 0.705 0.651
Lian et al. [25] R ✗ 0.906 0.881 0.145 0.153 0.081 0.087 0.837 0.784 0.165 0.172 - -
Chong et al. [13] R + T ✗ 0.921 0.902 0.137 0.142 0.077 0.082 0.860 0.812 0.134 0.146 0.853 0.849
Fang et al. [19] R + D ✗ 0.922 - 0,124 - 0.067 - 0.905 - 0.108 - 0.896 -
Bao et al. [5] R + D + P ✗ 0.928 - 0.122 - - - 0.885 - 0.120 - 0.869 -
Jin et al. [24] R + D ✗ 0.920 - 0.118 - 0.063 - 0.900 - 0.104 - 0.895 -
Tonini et al. [34] R + D ✗ 0.927 0.894 0.141 0.165 - - 0.940 0.894 0.129 0.182 - -
Qiaomu et al. [27] R + D + T ✗ 0.934 - 0.123 - 0.065 - 0.917 - 0.109 - 0.908 -
Tu et al. [36] R ✓ - 0.917 - 0.133 - 0.069 - 0.904 - 0.126 - 0.854
Tu et al. [36]⋆ R ✓ - 0.915 - 0.104 - 0.055 - 0.891 - 0.229 - 0.809
Our method R ✓ - 0.922 - 0.072 - 0.033 - 0.923 - 0.102 - 0.944
Our method R + D ✓ - 0.922 - 0.069 - 0.029 - 0.933 - 0.104 - 0.934

Table 3.1: Evaluation on the GazeFollow [31] and VideoAttentionTarget [13] datasets. Head GT refers to using carefully
labeled ground-truth head crops and locations in training and testing. Real indicated with † is the implementation of
[36], which applies an additional SOTA head detection network to predict the head location for real-world applications.
We produce only [34]’s Real results (see text for details). ⋆ indicates our implementation. R, D, T , and P stand for
RGB, depth, temporal processing, and 2D-pose, respectively.

We visualize gaze heatmaps of our method and [36] in Fig. 3.2 on the GazeFollow dataset. Our predictions are
more accurate compared to [36] in line with the quantitative results.

Figure 3.2: Qualitative results of our method (bottom) and Tu et al. [36] (middle) w.r.t. the ground-truth (top). For
simplicity, we show only one person’s gaze.
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4 Automatic Social Acceptance Detection

Detecting human-robot engagement involves recognizing and understanding the level of interaction, involvement, or
connection between people and robots in a specific situation [32]. This entails scrutinizing various cues like spoken
and unspoken communication, gestures, facial expressions, and other social signals to gauge how actively engaged
or responsive someone is to a robot [3]. To tackle this, our proposed method zeros in on analyzing how people look at
things. We make use of ARI’s previously discussed gaze target detection module to pull out specific features, taking
inspiration from [8], which has shown promising outcomes in understanding conversations involving multiple people.

Figure 4.1: Proposed pipeline for automatic robot acceptance.

Our proposed pipeline for automatic robot acceptance is shown in Fig 4.1. Given a set of frames from ARI’s head
camera, we feed them to the gaze target detection module G (Sec. 3) to produce the gaze heatmaps g, one per each
frame and person. Given a set of gaze heatmaps and the information of the gaze location in the scene detected by
our module, we define a gaze vector, which is a discretization of gaze location at each video frame. The instances of
that vector can be as follows:

• Total number of frames where a person is looking at the robot fr.

• Total number of frames where a person is engaging with another person in front of the robot fp.

• The number of frames where a person is looking outside the field of view of the ARI head camera (fout).

• The ratios between fr and fp, fp and fout, and fout and fr.

These features are used to train an MLP composed of 5 densely connected layers, with hidden dimensions set
to 32 and ReLU activation between each layer, along with the engagement annotation for the corresponding video
clip. The output of the social acceptance module is a continuous value from 0 to 1, with 0 being no-acceptance and 1
acceptance.

Our social acceptance module was trained using videos obtained from the SPRING project at Broca Hospital. The
acceptance ground truth for these videos was annotated by a psychology student. Specifically, we annotated five
videos featuring a total of seven individuals, totaling 55k annotated frames. Among these frames, 40k were labeled
as acceptance, while 15k were labeled as no-acceptance.

No engagement Engagement
No engagement 84 506
Engagement 13 1234

Table 4.1: Confusion matrix of our social acceptance model. Rows are prediction, columns are ground-truth.

Tab. 4.1 displays the confusion matrix for the evaluated performance of the proposed social acceptance module
on the Broca dataset. Additionally, when assessed on the Broca dataset, our method attains an accuracy of 71%.
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5 Conclusions

This deliverable presented three modules for (a) emotion recognition, (b) gaze target detection, and (c) automatic so-
cial acceptance of the robot. We presented both qualitative and quantitative results of the approaches, which showed
remarkable results. Emotion Recognition predicts whether a person has positive or negative emotion, the module
leverages the power of unsupervised pre-training to mitigate the domain shift problem when deployed on different
environments, moreover, the method achieves SOTA performance on various datasets. Furthermore, we propose a
single-microphone speech emotion recognition algorithm to evaluate the emotional state of people interacting with
ARI. Gaze Target Detection aims to predict where the person is looking. The module employs a novel end-to-end
Transformer-based gaze target detector able to simultaneously predict the object class and the location of the gazed-
object. The latter is advantageousw.r.t. existingmethods as it improves explainability. Extensive experiments validate
both modules showing comparable or better performance than SOTA methods. Lastly, we proposed a module for so-
cial acceptance of the robot that relies on ARI’s gaze target detection module to extract handcrafted features to learn
an acceptance score. The evaluation results of the social acceptance module on the Broca dataset reveal promising
results.
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