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Abbreviations

Abbreviation Meaning
AI Artificial Intelligence

AP-HP Assistance Publique – Hôpitaux de Paris (SPRING Partner)
ARI Social assistive robot used by the SPRING project
ASR Automatic Speech Recognition
BIU Bar-Ilan University (SPRING Partner)
CA Conversational Agent
CS Conversational System
DM Dialogue Management

CVUT Czech technical university in Prague (SPRING Partner)
ERM ERM Automatismes Industriels (SPRING Partner)
FAQ Frequently Asked Questions
HRI Human Robot Interaction

HWU Heriot-Watt University (SPRING Partner)
INRIA Institut National de Recherche en sciences et technologies du numérique (SPRING Partner)
LLM Large Language Model
MPC Multi Party Conversation
NLG Natural Language Generation
NLP Natural Language Processing
NLU Natural Language Understanding
PAL PAL Robotics (SPRING Partner)
PNP Petri-Net Planner
RAG Retrieval Augmented Generation
ROS Robot Operating System

SPRING Socially Pertinent Robots in Gerontological Healthcare
UNITN University of Trento (SPRING Partner)

WP Work Package (of the SPRING project)
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Executive Summary

Deliverable D5.4 reports on the final software components for multi-party interaction including the conversational
system, NLU, dialogue management, and NLG components geared towards dealing with realistic scenarios.

Thework reported in this deliverable was carried out to fulfil the objectives of task 5.3, in this deliverablewe present
the development of the multi-party conversational system.

D5.4: Multi-party conversational system in target environments Page 5 of 26



This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 871245.

1 Introduction

The overall objective of WP5 (Multi-User Spoken Conversations with Robots) is to develop techniques for multi-
user conversation involving a robot and multiple humans. This objective will enable sensor-based (data-driven) and
knowledge-based robot actions for multi-modal multi-person interaction and communication.

This deliverable reports on the final software components for the multi-party interaction including the ASR, the
conversational system, NLU, dialogue management, and NLG components geared towards dealing with realistic sce-
narios.

This document describes the development of the SPRING multi-party conversational system. Section 2 describes
the data collection efforts for eliciting complex and natural multi-party conversations with a Social Robot for training
the multi-party conversation system. In Section 3 we describe the multi-party automatic speech recognition (ASR)
module. In Section 4 we describe the conversation system for multi-party interactions. Section 5 describes the final
implementation and outputs of the Multi-party Conversational System.

The software will be released in the code repositories for WP5 [45], WP3 [43], and WP4 [44].
As per European Commission requirements, the repository will be available to the public for at least four years

after the end of the SPRING project. People can request access to the software from the project coordinator at
spring-coord@inria.fr. The software packages use ROS (Robotics Operating System) [46] to communicate with
each other as well as the modules developed in the other work packages.
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2 Multi-Party Data Collection

We require high-quality and relevant corpora to be able to use data-driven models to tackle multi-party dialogue chal-
lenges for the SPRING project.

A comprehensive summary of existing multi-party corpora revealed that they are all human-human datasets [28].
Therefore, for SPRING we conducted a data collection where a social robot is also one of the interlocutors. This is
an important distinction as there are differences in behaviour when talking to a robot compared to a human [35, 24].
Collectingmulti-modal data of real human-robot interactions was therefore critical to create amulti-party social robot,
as will be the case for the ARI robot in SPRING.

2.1 Design

The context for our data collection is the hospital scenario of SPRING, where the robot plays the role of reception-
ist/helper. The system can answer FAQs about topics like patient schedules, catering facilities, directions to key
hospital locations, etc. The data collection is designed to capture 3-way conversations with pairs of participants and
a robot. Each participant is then assigned one of two roles: the patient, or the patient’s companion – a reasonable
assumption in this context. An information sheet is provided with their role description and an image representing
their goal. Participants will enter the ‘reception room’ at Broca hospital and will encounter the robot helper. They are
given complete freedom to interact with each other and the robot as they see fit to accomplish their goals.

Figure 2.1: A sample of the pictograms used to represent user goals, given to patients and companions (find eleva-
tor/cafe/room 17/appointment time). These elicited dialogues without restricting vocabulary.

We give participants pictograms in the task instructions sheet to provide them with their goal, Figure 2.1 shows
examples of the pictograms, in order to not bias how they individually approach achieving their goal. Representations
based on pictures can elicit more informative, more natural, more diverse, and better-phrased data, without priming
participants to produce specific lexical items or phrases [30].

Full details from the design of the data collection for multi-party task-based dialogue can be found in [4].

2.2 Collection

Data Collection was carried out by AP-HP researchers. The experiments were held in the Living Lab of the Broca Hos-
pital (AP-HP) where volunteers were recruited to participate in the experiments. A description of the Day Care Hospital
environment, recruitment, and methodology for working with participants can be found in deliverables D1.4 [39] and
D1.5 [40].

At the time of writing a total of 91 interactions (both single and multi-party) have been collected with participants
in the hospital. Table 2.1 summarises the different phases of data collection.
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Table 2.1: Multi-Party Data Collection Phases.

Dates Location System Num Interactions
April 2022 Broca Living Lab Wizard of Oz 35
17th-21st October 2022 Broca Living Lab Integrated V1 10
29th-31st March 2023 Broca Living Lab Multi-Party V1 10
11th May-18th September 2023 Day-care Hospital Integrated V2 15
19th Sep-22nd Nov 2023 Day-care Hospital LLM V1 21

2.3 Annotations

We have, so far, transcribed, translated (from French to English), anonymised, and annotated 29 multi-party conver-
sations (774 turns) from the first experiment wave in April 2022.

An annotated extract from an MPC in our collected corpus can be found in Table 2.2. In turn 1, U1 states that “we’d
like a coffee”, indicating that U1 and their companion U2 would both like a coffee. This turn is annotated with two
intents: greet (due to the “hello”), and request. This request intent has a slot value to indicate that the request is for
a beverage – coffee. The goal tracking annotation signifies that a goal has been established in this turn with ‘G’. The
goal is shared by ‘U1+U2’, and their goal is to drink a coffee. In turn 2, ARI responds informing both users where the
café is, hence the inform intent annotation. The goal tracking annotation is the same as turn 1, but starts with ‘AG’
(for ‘answer-goal’) instead of simply ‘G’. This indicates that this goal has been answered, which is critical knowledge
for the system to track which goals remain open. In this example, the goal is explicitly closed in turn 3, indicated
by the corresponding ‘CG’ (close-goal) goal-tracking annotation. Not all goals are explicitly closed by the user. A
dialogue manager could decide to implicitly close an answered goal if the user does not reopen it within three turns,
for example. We only annotate explicit goal closures, like the one in turn 3. There are two intents annotated in both
turns 1 and 3 in Table 2.2, and multiple goal annotations can similarly exist, separated by a semicolon. For example,
“I’m hungry but need the toilet first” simultaneously opens two goals. All of these annotations were completed using
the ELAN tool [7].

Table 2.2: A corpus example displaying shared goals with both intent-slot and goal-tracking annotations.

User Utterance Intent-Slot Annotation Goal Tracking Annotation
1 U1: Hello, we’d like a coffee. Where can we go? greet(); request(drink(coffee)) G(U1+U2, drink(coffee))
2 ARI: You have to enter the building behind you. inform(directions(cafe)) AG(U1+U2, drink(coffee))
3 U2: Ok, well thank you very much. acknowledge(); thank() CG(U1+U2, drink(coffee))

This annotated data has been used to continuously evaluate the performance of the conversational system devel-
oped in Chapter 4.
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3 Multi-Party ASR

3.1 Audio Pipeline

Multi-channel audio (Raw)

- Enhancement
- Separation
- Extraction
- DOA estimation

- Speaker Identification
- VAD

ASR

- MoDe: single channel speech enhance-
ment
- Single microphone source separation and
VAD
- Single microphone speaker extraction and
dereverberation
- Audio DOA Est. (GCC-PHAT)

- Speaker identification using voice embed-
ding with ECAPA-TDNN (NVIDIA Nemo)
- VAD using WebRTC

- NVIDIA RIVA 2.7
- Two ASR clients with one ASR server, if
source separation/extraction is activated

Figure 3.1: Simplified Audio Pipeline of the Multi-party ASR

In real-life scenarios, a robot may engage with a group of people amid noisy and reverberant surroundings. The
audio pipeline’s objective is to generate multiple streams of transcribed speech from all speakers, which the conver-
sational system will utilize. The transcribed text streams should maintain consistency over time. This may require
various methods of attributing identity to the speakers, including direction of arrival (DOA) estimation and speaker
identification.

We limit the scenarios to a maximum of two concurrent speakers. We also assume that the robot interacts with
individuals in a half-duplex manner; namely, it does not listen while talking.

The audio pipeline encompasses a four-step process as outlined below. It can be viewed schematically in Fig. 3.1.

1. Acquire raw audio from the ReSpeaker microphone array.

2. Enhance the speechquality through various algorithms, including noise reduction, source separation, and speaker
extraction. Additionally, the DOAs of the speakers in the scene is estimated.

3. Apply voice activity detector (VAD). When speech is active, a speaker identification module is activated to pro-
vide speaker embedding, solely characterizing the speaker’s voice.

4. Transcribe the enhanced audio data using the RIVA automatic speech recognition (ASR) engine. The resulting
streams of transcribed text (maximum two) are fed into the dialogue manager for further processing.

This process was designed to comprehensively handle the intricacies associated with understanding both single
and multiple speakers, using a systematic approach for audio processing and analysis.
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3.1.1 Noise Reduction

The noise reduction module [8] presents a single-microphone solution founded on a Mixture of Deep Experts (MoDE)
neural-network architecture. This “Divide and Enhance” structure encompasses a collection of deep neural network
(DNN)-based sub-networks, each acting as an ‘expert’ attuned to a distinct speech spectral pattern, such as a phoneme.
Each expert generates a speech presence probability (SPP)map, determiningwhether a time-frequency bin is predom-
inantly speech or noise based on its expertise. The final time-frequency mask is derived by weighting the SPP esti-
mates from various experts, using weights determined by the gating DNN. Subsequently, a soft spectral attenuation,
guided by the estimated mask, is applied to enhance the noisy speech signal. The experts’ specialization enhances
robustness to unfamiliar noise types and concurrently reduces inference complexity. A block diagram illustrating the
noise reduction algorithm is presented in Fig. 3.2.

Figure 3.2: Block diagram of the mixture of deep experts (MoDE) algorithm.

3.1.2 Speaker Extraction

The speaker extraction module is underpinned by a two-stage method [17]. This architecture consists of two sub-
networks: one dedicated to the extraction task and the other to dereverberation and residual interference suppression.
Beginning with a reference signal of the desired speaker, the module initially extracts the clean yet still reverberant
speaker from the noisy-mixed signal. In the subsequent stage, the extracted signal undergoes further enhancement
through joint dereverberation, coupled with residual noise and interference reduction. The method’s block diagram is
illustrated in Fig. 3.3. Through simulation studies, it has been demonstrated that this extraction algorithm surpasses
state-of-the-art (SOTA) algorithms when applied to speech mixtures in realistic and adverse acoustic conditions. A
noteworthy feature of the speaker extraction algorithm, particularly pertinent to the SPRING project, is its capability
to estimate speaker embeddings that can be leveraged for speaker identification tasks.

3.1.3 Speaker Separation

The speech separation module implements a recent single-microphone speaker separation algorithm [31] aiming at
noisy and reverberant environments typical to real-world environments. Two variants of the algorithm are available,
Separation TF Attention Network (Sep-TFAnet) and Sep-TFAnetVAD. The latter incorporates a VAD into the separation
network. The separation module is based on a temporal convolutional network (TCN) backbone inspired by the Conv-
Tasnet architecture withmultiplemodifications. Rather than a learned encoder and decoder, we use short-time Fourier
transform (STFT) and inverse short-time Fourier transform (iSTFT) for the analysis and synthesis, respectively. Since
the system is specially developed for human-robotic interactions, it is designed to support online mode. The Sep-
TFAnetVAD variant provides activity patterns of the separated speakers and can serve for diarization in the downstream
dialoguemanager. The separation capabilities of Sep-TFAnetVAD and Sep-TFAnet were evaluated using simulated data
under several acoustic conditions, demonstrating their advantages over competing methods. In this document, we
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Figure 3.3: Speaker extraction using a reference signal.

will demonstrate the separation results of data obtained by ARI.1 The block diagram of the separation algorithm is
illustrated in Fig.3.4.

Figure 3.4: Separation algorithm.

3.1.4 Speaker ID

Various attributes influence the speaker’s identity, differentiating between short-term and long-term identification.
Short-term identification relies partly on spatial information derived from the current scene. This involves employing
a late fusion mechanism that combines visual-based and audio-based DOA estimation.

We employed a time difference of arrival (TDOA) estimation for the audio modality, utilizing an instantaneous
version of the generalized cross-correlation phase transform (GCC-PHAT). This implementation utilizes two horizontal
microphones from the Respeaker microphone array embedded in ARI. The TDOA readings are then translated into
DOA estimates using geometric considerations, and these estimates are further enriched with spatial information
obtained through visual means. Additionally, depth information obtained through the visual modality proves valuable
in accurately determining the DOA, particularly in scenarioswhere speakers are close to the robot. It is noteworthy that
while the GCC-PHAT algorithm reliably provides TDOA readings in frames with a single speaker, a robust extension of
the GCC-PHAT [37] will be explored for cases involving concurrent activity ofmultiple speakers, should an audio-based
DOA estimate be necessary for such scenarios.

For long-term speaker identification, we depend on Nvidia’s ECAPA-TDNN model to extract speaker embeddings,
producing a 192-dimensional voice signature vector.2 The speaker identification module stores embeddings linked
to specific speakers in an internal database. A specific speaker is identified when the cosine similarity between its
embedding and an entry in the database is higher than a predefined threshold.

Nevertheless, the existing method exhibits inconsistency in scenarios with multiple speakers, resulting in arbitrary
speaker switches. To tackle this issue, we are presently implementing a more robust solution that integrates the

1https://Sep-TFAnet.github.io
2https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/ecapa_tdnn
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speaker embedding model with segmentation and clustering techniques for enhanced results [12]. Initial results are
promising. Finally, the speaker embedding obtained from the speaker extraction algorithm can serve as a speaker ID,
at least during the conversation.

3.1.5 NVIDIA Riva ASR

We have implemented Nvidia’s on-premise RIVA version 2.7, which includes an updated language model and com-
prehensive support for the French language, encompassing punctuation and capitalization.3 To enhance sentence
parsing accuracy, we integrated a DNN-based VAD and introduced a configurable pause time between sentences.
This ensures improved handling and processing of spoken content to avoid incorrect sentence segmentation.

3.2 Audio Data Collection

The audio pipeline’s performance underwent assessment through a series of experiments. The primary objective of
this processing is to enhance ASR performance within the challenging hospital setting characterized by reverberation
and noise. To simulate these conditions accurately, the acoustic laboratory at Bar-Ilan University (BIU) was employed.

3.2.1 Dataset of French Utterances

Through a collaboration between BIU and Harriot Watt University (HWU), a dataset was created that comprises com-
mon phrases typically encountered in a hospital setting. The HWU team curated 100 French sentences and assigned
specific intents to each of them.

The recording campaign was held at the Broca Hospital and was organized by the hospital team. The sentences
were uttered by eight individuals, categorized as two elderly men, two elderly women, two young men, and two young
women, and captured using a close-talk microphone. To streamline the data collection process, BIU designed custom
software with an accompanying user interface (refer to Fig. 3.5). Overall, 423 utterances were recorded.

Figure 3.5: Screenshot from the user interface for the data collection at BROCA.

3.2.2 ASR Accuracy

Alongside this dataset, an alternative scoring system, the semantic error rate (SER), was introduced by HWU to com-
plement the widely used word error rate (WER). While WER effectively measures overall system performance, SER
introduces the critical dimension of semantically comprehending the intent of the sentence by the dialogue manager.
Using both metrics provides a more comprehensive assessment of our audio pipeline.

3https://docs.nvidia.com/deeplearning/riva/user-guide/docs/release-notes.html#riva-release-2-7-0
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3.2.3 Acoustic Setup

To analyze the algorithms’ performance in a real-world setting, specifically in the context of robot audition, a com-
plementary recording campaign was held at the acoustic laboratory at Bar-Ilan University. This lab is a 6× 6× 2.4 m
roomwith a reverberation time controlled by 60 interchangeable panels covering the room facets. In our experiments,
the reverberation time was set (by changing the panel arrangements) to either 350 ms, typical of a meeting room, or
600 ms, typical of a lecture hall. The room layout is depicted in Fig. 3.6a.

ARI is equippedwith a ReSpeaker 4-MicrophoneArray v2.0, 4 installed inside the robot’s compartment, 80 cmabove
its base. We only used one of the microphones for evaluating the noise reduction and the separation algorithms.

In our experimental setup, ARI was centrally positioned in the acoustic lab, surrounded by loudspeakers arranged in
a semi-circle with a radius of approximately 1m. Five loudspeakers were positioned on the perimeter of the semi-circle
at [−65,−30, 0, 30, 65]◦. The experimental setup is schematically depicted in Fig. 3.6b.

(a) Lab view with ARI and loudspeakers. (b) Schematic view of the experimental setup.

Figure 3.6: Experimental setup at BIU acoustic lab.

3.2.4 Assessment of the Noise Reduction Algorithm

To assess the efficacy of the MoDE algorithm [8], we played the 423 utterances recorded at Broca through randomly
selected loudspeakers at the two tested reverberation levels. Additionally, babble noise, generated by transmitting
multiple speakers from eight surrounding loudspeakers, was separately recorded. The clean and reverberant speech
signals were combined with the noise signal at a signal-to-noise ratio (SNR) level of 12 dB. In Fig 3.7, we depict a
histogram illustrating the occurrences of eachWER level for (a) the clean and reverberant signals, (b) the noisy signals,
and (c) the enhanced signals. MoDE demonstrates the capability to reduce the WER.

4https://wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/
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(a) Clean and reverberant. (b) Noisy (12 dB babble noise). (c) Enhanced by MoDE [8].

Figure 3.7: ASR histograms for T60 = 350 ms. Average WER and SER scores are also depicted.

3.2.5 Assessment of the Speaker Separation Algorithm

To assess the separation algorithm [31], we constructed an additional dataset comprising amixture of speakers. Each
sample was created by randomly selecting two loudspeakers (refer to Fig. 3.6b) and playing speech utterances ran-
domly chosen from the Librispeech test set [32]. These utterances were individually recorded by ARI and manually
mixed for subsequent Signal-to-Interference plus Noise Ratio (scale-invariant signal-to-distortion ratio (SI-SDR)) cal-
culation. The overlap between speakers was randomly set within the range of [25%, 50%]. No external noise was
introduced, so only sensor and low-level ambient noise were present in these recordings. In total, 200 samples were
generated at each reverberation level.

The histograms in Fig 3.8 depict the frequency of occurrences per WER level. Significant performance improve-

Figure 3.8: WER results with ARI recordings, T60 = 0.35 s and low sensor noise. The overlap of the speakers was
randomly set to the range [25%, 50%].

ments in the WER are evident, with a notable improvement from 76% to 18.23% in the mean WER. Additionally, a
distinct shift in the histogram towards lower WER levels is observed.
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4 Multi-Party Conversational System

Tasks that are typically trivial in the dyadic setting become considerably more complex when conversing with multiple
users [50, 20]: (1) The speaker is no longer simply the other person, so the meaning of the dialogue depends on
recognising who said each utterance; (2) addressee recognition is similarly more complicated as people address
each other, the robot, and groups; and (3) response generation depends on who said what to whom, relying on the
semantic content and surrounding multi-party context.

In a previous deliverable (D5.1 [41]) we described the architecture for the initial conversational prototype. The
conversational system provided functionalities of Natural Language Understanding (NLU), Generation (NLG), and the
Dialogue Manager (DM), and interfaced with the high-level task planner allowing for concurrent execution of dialogue
and task-based actions based on the current dialogue, and interaction status. The overall architecture of this system
is illustrated in Fig 4.1.

After the appearance of Large Language Models (LLMs) and their remarkable capabilities in handling NLP tasks,
the initial Modular Architecture was replaced with a Conversational System powered by Large Language Models, to
provide a state-of-the-art experience for participants in the SPRING experiment at the BROCA living day care hospital.
The overall architecture for the current LLM-based system is illustrated in Fig 4.2.

4.1 Initial Modular Architecture

Figure 4.1: (left) The system architecture for the Initial High-level Task Planner and Conversational System: showing
the planning and execution framework on the left (in blue) and the conversational system on the right (in green), and
components (in yellow) combining the two systemswith the robot in themiddle. (right) The initialmodular architecture
for the Conversational System: presents several domain-specific conversational bots (orange blocks).

The initial conversational systemwas developed as an extension of the social bot Alana, whichwas twice finalist in
the Amazon Alexa challenge [34, 13] and had previously proven successful as a foundation for other conversational AI
projects [18]. While the high-level task planner is implemented by a Petri Net planner [16], and interfaces the dialogue
system and the sensors and physical actions of the robot, and has been presented in Deliverable D5.3 [42].

The original conversational system was an ensemble of two types of chatbots, 1) functional bots that drive the
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conversation in case it has stalled, deal with profanities, handle clarifications, or express the views, likes, and dislikes
of a virtual Persona; and 2) content-delivery bots that might potentially produce a reply to the user’s utterance from
different information sources, e.g., Wikipedia, Reddit, and different News feeds, as well as a database of interesting
facts.

• Natural Language Understanding (NLU) – in the system, users’ utterances are parsed using a complex NLU
pipeline, described in detail by [13], which consists of steps such as Named Entity Recognition, Noun Phrase
extraction, co-reference and ellipsis resolution, and regex-based intent recognition. We have also employed
the RASA framework1 to handle enquiries specific to the hospital domain, such as check-in procedures and
navigation within the building. In addition, the Persona and Quiz bots rely on the scripting language AIML2 or
similar patterns to parse the user queries.

• Natural Language Generation (NLG)– theNLG strategywas designed for each bot. In the initial system, it mainly
employs complex and carefully designed templates for different bot-specific purposes, or else content retrieved
from “safe” online sources such as Wikipedia and News sites.

• Dialogue Management (DM) – at every dialogue turn each bot attempts to generate a response. The decision
as to which response is selected was then handled by the Dialogue Manager. The current selection strategy
was based on a bot priority list. If multiple bots produce a response, the response from the bot with the highest
priority is selected.

In order to meet specific medical care requirements, the prototype system extends the original Alana pipeline by
keeping basic functional bots (see blue blocks in Fig. 4.1 (right)) and then introduces several domain-specific bots (as
described below).

Reception Bot

The Reception Bot provides practical support to patients and their companions who are visiting the Memory Clinic
within the hospital clinic. It is responsible for greeting visitors, supporting them during check-in, and answering fre-
quently asked questions relating to the clinic’s facilities (e.g. “is lunch provided?") and the format of the patient’s visit.

Directions Bot

The Directions Bot handles requests for help in finding key locations and/or facilities within the clinic itself, and the
wider hospital, e.g., bathrooms, the way out, the coffee machine, etc. Directions are currently given in an objective
manner, ie. not relative to the user or the robot – for example “The bathroom is to the opposite the dining room,
through the double doors".

Task Bot

The task bot is able to trigger tasks and handle communication between the task and the user. The system com-
municates with the robot using the Arbiter node (see Fig. 4.1). As such, the task bot exchange information with the
High-Level planner via the inclusion of specifically formatted commands in the response which, besides text to be
synthesised via the TTS, hold all the information required for the next task dialogue act (as opposed to the social
dialogue sub-bots that require and respond using text messages only).

Corona Quiz Bot

The Quiz game is a hand-crafted chatbot that employs a XML-styled conversational flow. The bot is deployed to keep
patients entertained while they wait, by answering a list of topic-specific questions (e.g., Covid-19). Those particular
questions have been chosen to draw attention towards common tips provided by the WHO, which aim at helping to
manage an individual’s physical health. The content of the quiz can easily be modified in the future for example for
music, general knowledge, etc.

1https://rasa.com
2http://aiml.foundation
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Later on in the SPRING project, the initial Modular Architecture was replaced with a Conversational System pow-
ered by Large Language Models. The onset of LLMs has revolutionised the field of NLP. These models have proved
excellent at language understanding, and this includes MPCs [22, 21, 19, 53] as their pre-training includes scripts and
meeting transcripts containing multiple people. They also hold a wealth of general knowledge, enabling abilities like
question answering (QA), joke telling, and playing quizzes. We have re-implemented our system therefore based on
LLMs to provide a state-of-the-art experience for participants in the SPRING experiment at the BROCA living day care
hospital.

4.2 LLM-based Architecture

The SPRING conversational system presented in this deliverable has been iteratively improved through regular user
tests and interviews with patients visiting the hospital memory clinic, we have carried out different data collection
efforts throughout this time (see Chapter 2). We have used this data to motivate and evaluate the system we present
here.

Foundational LLMs, and their capabilities for zero-shot reasoning [25], chain-of-thought prompting [51], and instruction-
tuning [52], present clear opportunities for the development of a ‘new breed’ of social robots. In SPRING we are taking
the advantages of these “emergent abilities” of LLMs for solving complex language-related tasks but also for visual,
multi-modal, real-world grounding and perception tasks. Therefore, we have redeveloped the multi-party conversa-
tional systems with an LLM-based architecture, see Figure 4.2, replacing the initial modular architecture, in order to
exploit the capabilities of LLMs, while making efforts to reduce the risks of hallucinations [15] that these generative
approaches also present.

This new system improves QA accuracy, accessibility for people with dementia, and enables added functional-
ity, like multi-party conversations. Where previously, we had to specifically design the system to tell jokes and run
entertaining quizzes [3, 36], LLMs can now handle this inherently due to their world knowledge.

Some LLMs, like ChatGPT, can only be used through external APIs. This is cause for a significant privacy concern,
especially in our healthcare setting. Even if participants were instructed carefully, it is impossible to ensure they would
not reveal personally identifiable information – this problem is exacerbated in a memory clinic setting [2]. We must
therefore use more open and transparent LLMs [27].

To implement our LLM-based solution we evaluated a number of available open-source LLM models, including
Llama [48] and Llama-2 [49], Vicuna [10], Guanaco [14], MPT [47], and Falcon [5]. Given our sensitive setting, limitations
in hardware, and the performance we obtained from the previously mentioned open-source models, we choose to use
a Vicuna model with 13 billion parameters (Vicuna-13b-v1.5 [10]) as our system’s core LLM.

Figure 4.2: (left) Updated diagram for the Conversational System and High-level Task Planner architecture: showing
the planning and execution framework on the left (in blue) and the conversational system on the right (in green) where
the previous interface has been replaced with an LLM-based architecture, and components (in yellow) combining the
two systems with the robot in the middle. (Right) the LLM-based architecture for the Conversational System: first the
dialogue manager parses user utterances and information about the user interacting with the robot; user utterance
is fed with the ‘Addressee Detection” and “Partial Utterance” to the LLM to classify. If the robot is being addressed,
partial utterance detection is used to choose whether the robot should answer with a clarification request (when we
receive a partial utterance) or use the prompt with information about the hospital.
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4.2.1 Addressee Detection

Critically for MPCs the conversational system needs to be able to take and pass turns appropriately in an interaction
between at least two human users and the robot. Normally, conversational systems will reply to every user’s turn,
assuming always dyadic interactions. In MPCs, as is the use case for the SPRING project, people can talk to both the
robot and each other.

We annotated real MPCs collected in the Broca hospital in Paris, as discussed in Chapter 2. Using both video
and audio, the gold-standard addressee of each turn was annotated along with whether the user was looking at ARI
or not, since multimodal information is essential to determining who the addressee is when the text alone could be
ambiguous. An example conversation, between two users (U1 and U2) and the ARI robot, U1 says “What time is my
appointment?” and U2 replies “It’s at 10am”. If the robot had replied to U1 then it would have interrupted U2. However,
the addressee of U1’s turn is ambiguous given the text alone. But inspecting the video recordings we can annotate
the addressee of U1 utterance as U2 base on the gaze information. Alternatively, if the user said “Do you want to sit
down?”, it should be clear that ARI is not being addressed from just the text, as a robot cannot sit down.

Table 4.1: Sample Prompt for Addressee Detection

You are the assistant for a robot receptionist (ARI) stationed in a day-care hospital in France with two or more people.
The robot is programmed to respond when addressed by users and has the capability to assess user gaze direction for additional context.
### GAZE INFORMATION ###
<gaze>

### DIALOGUE HISTORY ###
<dialogue_history>

Analyse both gaze information and dialogue history to determine whether <user_id> is currently addressing the other person or the robot.
...
ASSISTANT: <LLM_response>

Table 4.2: Sample Prompt for Addressee Detection providing the LLM with examples

You are a robot speaking with two people. They are usually speaking to you, but they may speak to each other (this is rare).
If the user is currently looking at you, they are definitely talking to you.
Here are some examples:
...
knowledge: You know that U1 is currently looking at you and says ’Hello, can you help me’
answer: yes

knowledge: You know that U1 is currently looking at you and says ’Do you need a seat’
answer: no

knowledge: You know that U2 is currently looking at you and says ’How do we get there’
answer: yes
...
This is the current information.
knowledge: You know that <usr_id> is looking at you and says <user_utterance>
Given the above information, is <usr_id> speaking to you? You MUST ONLY answer with ’yes’ or ’no’.
...
ASSISTANT: <LLM_response>

Using the Vicuna-13b-v1.5 LLM [10], we are developing and evaluating an addressee detection prompt. This prompt
asks the LLMwhether the user utterance “is currently addressing the other person or the robot” based on the semantic
content of the sentence as well as multimodal information about the current speaker’s gaze, which is to be provided
by the components from WP3 and WP4.

Tables 4.1 and 4.2 present excerpts of example prompts used for the “Addressee Detection” classification task. As
shown in Figure 4.2 (right), we first classify the user utterances as whether the robot is the addressee or not. When the
robot is not being addressed by the user utterance we simply ignore it (pass the turn) and continue to listen without
interrupting the conversation.
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4.2.2 Partial Utterance Detection and Clarification

In a hospital’s memory clinic, voice accessibility is critical [1], and people with dementia pause more frequently and
for longer duration mid-sentence due to word-finding problems [6, 38]. These pauses can be mistaken as an end-of-
turn by the ASR, resulting in the user being interrupted with nonsense or a generic response like “I’m sorry, I didn’t
understand that”. The user is then forced to repeat their entire turn again, leading to a frustrating and unnatural
interaction [29, 23, 33]. Producing incremental clarification requests is, therefore, important for building naturally
interactive spoken dialogue systems [11].

In order to handle our user’s incomplete sentences, we first ask the LLMwhether the turn was a complete sentence
or a partial utterance. When a partial utterance has been detected, we use the ‘clarification prompt’ to generate an
incremental clarification request to create a more accessible and naturally interactive conversational system.

Table 4.3: Sample Prompt for Partial Utterance Detection

Sometimes people don’t finish their sentence because they forget the word they are looking for.
People usually do finish their sentences. ONLY return ’yes’, or ’no’ as your answer.
Here are some examples:
...
sentence: Does the cafe sell tea
answer: yes

sentence: can you direct me to
answer: no

sentence: I am going now, goodbye
answer: yes
...
Did the person finish this sentence?
USER: <user_utterance>
ASSISTANT: <LLM_response>

Table 4.3 presents an excerpt for the developed prompt for the “Partial Utterance Detection” classification task. As
shown in Figure 4.2 (right), we first (in parallel calls with the detection of the addressee) classify the user utterances
as whether they present a partial utterance or not.

When the system has detected a user utterance to be partial, and the robot has been classified as the addressee,
we then generate an incremental clarification request with the “Clarification” response prompt by giving it annotated
examples from an Interruption Recovery Corpora3 from human conversations.

Table 4.4: Sample Prompt for generating Clarification Responses

Sometimes you don’t hear everything someone says (for example, if a door slams shut).
You will see an interrupted question, and it would be helpful if you could type what you would naturally respond.
Don’t overthink it, just write whatever immediately comes to mind.
...
Example 1:
Person: Who was the father of DOOR SLAM
Possible response: Sorry, of who?
Reason: You apologise for not hearing everything, and then ask "of who?" as the answer must be the father of a human.
Possible response: Father of who?
Reason: You repeat "father of" to indicate where you finished correctly hearing the person. You then ask "who?" because the answer must be the father of a human.
Possible response: I didn’t catch all of that, who?
Reason: You let the person know that you didn’t hear their whole question, and then ask "who?" because the answer must be the father of a human.
...
Task:
USER: <user_utterance> DOOR SLAM
ASSISTANT: <LLM_response>

Table 4.4 presents an excerpt for the developed prompt for the “Partial Utterance Detection” classification task.

3https://github.com/AddleseeHQ/interruption-recovery
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4.2.3 Hospital Information Response

Unlike the initial conversational system, we interface with our core LLM using prompts. A specific prompt was created
to provide the LLM with the hospital information required to answer participants’ questions in the Broca day-care
hospital. In addition to the information about the hospital, the prompt is given some additional guardrails like “you
are not qualified to give any medical advice or make medical diagnoses” and “you do not have access to individual
patient records or schedules” in order to reduce the risk of the LLM providing information that could be harmful.

One huge benefit of using LLMs vs. the initial modular architecture is their inherent ability to perform general chit-
chat, tell jokes, and access a wealth of general knowledge.

With the original system, we could only respond suitably to utterances that the systemwas pre-designed to handle;
and we would attempt to respond to unexpected utterances with tips, teaching the user what the system can do (e.g.
“I’m not sure, but I can help you with directions and menu information.”). Many of these unexpected utterances can
now be handled directly by the LLM due to its capability to handle general, out-of-domain, questions.

The “Hospital Information” prompt provides the LLMwith general context about the role of the robot in the hospital,
and information about the day-to-day activities in the hospital the SPRING use case expects the robot to be able to
answer. In the initial modular architecture, this information was distributed among the many different ‘bots’, such as
the “direction” and “reception” bots.

Table 4.5: Sample Prompt for generating Hospital Information Responses

You are a friendly robot receptionist in a hospital day-care clinic. Your name is ARI.
At the moment you work on Monday, Tuesday and Thursday afternoons.
Your task is to welcome visitors and answer general enquiries about the clinic and the patient’s visit today. You can also help them pass the time with riddles and jokes.
...
Since this is a hospital, you have to be careful about the conversation with the patient. The knowledge base for the robot is provided here.
If the answer to the question is not available in the knowledge base and it concerns other hospital departments or medical specialities, please say ’I am sorry I don’t have that information.’
...
Patients often attend the day-care hospital for the whole day. If they want to check in, you can welcome them and suggest they take a seat while they wait.
To check-in, it is best if they have their appointment letter and social security cards ready.
They will have several appointments with different professionals; most commonly a nurse, followed by a psychologist or neuropsychologist, and finally a consultant who puts all the information together.
The appointment with the doctor is always last.
...
Waiting times vary from 5 minutes to half an hour. It depends on how many people have appointments today. Patients are not expected to find their own way to the consulting rooms.
Instead, a nurse or a doctor will come to collect them when it is time for their consultation.
Companions can choose to accompany their loved one during the consultation or wait in the waiting room.
...
The doctors and nurses are very busy. If the visitor has been waiting a long time, you can suggest jokes or riddles to pass the time.
If a patient wants to leave they should talk to a nurse first to check if their appointments are finished.
...
For patients, food is provided free of charge. Snacks for patients are available from the nurse.
Breakfast is provided for patients who have been asked to fast before their appointment.
...
You (Ari), the robot, are in the dining room of the day-care hospital. If the user asks where the dining room is, tell them they are in the dining room right now.
If the visitor asks where they are, tell them they are in the dining room of the day-care hospital.
...
The clinic entrance is in the main waiting room, next to the reception desk. To get there, leave this room and turn right through the double-doors into the main waiting room.
The exit is next to the reception desk, in the main waiting room. To get there, leave this room and turn right through the double doors into the main waiting room.
...
There is public transport close to the hospital. Subways are Metro 6, at the Glacière stop, and metro 7, at the Gobelins stop.
Buses 27, 47, 59 and 83 are accessible at the Gobelins and Boulevard Arago stops. Taxis can be ordered directly on the visitor’s mobile phone, or at reception.
...
USER: <user_utterance>
ASSISTANT: <LLM_response>

Table 4.5 presents excerpts of the developed prompt for the “Hospital Information” responses. If the user utterance
was not partial and the sentence was a complete sentence, the utterance is given to the LLM with the “Hospital
Information” prompt to generate a response to the user question.

The LLM’s static world knowledge can cause harmful hallucinations due to conflicts with the information given in
the prompt. We are exploring different research avenues in prompt engineering in order to minimize the risk of hallu-
cinations and non-factual information being generated by the LLM by grounding the LLMs to in-prompt Instructions.
One such approachwe have found is that a prompt providing the passage as a quote by a fictitious non-celebrity name
helps to ground responses to the in-prompt knowledge. Another approach is Retrieval Augmented Generation [26].
RAG helps us reduce hallucinations, fact-check, and provide domain-specific knowledge by adding an information
retrieval system that provides grounded data to the LLM.

Gesture Generation

With the LLM we can also produce helpful robot gestures to accompany the response generation. We generate ges-
tures using the LLM in parallel with the grounded answer generation. In the LLM prompt, some examples of gestures
can be provided as examples, using the gesture tags that the robot uses [9]. The response text can be passed to ARI’s
text-to-speech system, and the corresponding generated gesture tags are passed to ARI’s movement controls at the
same time.
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4.3 Multi-Party Example Interaction

With the new LLM system architecture, the conversational capabilities of the SPRING system are expanded in a signif-
icant way. The system is able to decide when to take its turn, generate natural clarification requests (improving acces-
sibility for peoplewithmemory impairment), answer in-domain questions grounded to our domain-specific knowledge,
and respond appropriately to out-of-domain requests like generating jokes, quizzes, and general chit-chat.

Table 4.6 shows an example dialogue that was recorded between two users and the system, encompassing each
of the key features described above.

Table 4.6: Multi-party Dialogue Example: Directions, Clarification, Repetition, Entertainment, Addressee Detection

U1: Can you help me?
ARI: Of course. How can I assist you today?
U1: I would like a cup of coffee.
ARI: I’m sorry like a cup of what? [ASR didn’t hear "coffee" triggering a clarification ]
U1: Of coffee.
ARI: There is a coffee machine and a cafe located on the ground floor of the hospital for visitors where they can purchase and enjoy coffee.
U1: How do we get there?
ARI: To get to the coffee machine or cafe you can take the elevator or the stairs to the ground floor of the hospital.
U1: Sorry, can you repeat that please? [U1 needs more time to process the information]
ARI: Sure, to get to the coffee machine or cafe you can take the elevators or stairs to the ground floor of the hospital.
U1: Okay thanks I understand now.
ARI: You’re welcome. Let me know if you have any other questions.
U2: Can you name a song by.... [U2 forgets the name of the band, triggering a clarification]
ARI: Sorry I didn’t catch the name of the song.
U2: Song by Queen.
ARI: Bohemian Rhapsody by Queen.
U1: I’m feeling very worried about being here.
ARI: I’m sorry to hear that. Is there anything specific that is causing you worry or anxiety? I’m here to help if you need to talk. [Empathetic response]
U1: Could we play a quiz to distract me?
ARI: Sure I can give you a quiz. Here’s a riddle: What has keys but can’t open locks?
U1: That’s easy it’s a piano.
ARI: That’s correct! Here’s another one.

I am light as a feather, yet the strongest man cannot hold me for much longer than a minute. What am I?
U2: When were pianos invented? [Abruptly ending the quiz triggers a clarification ]
ARI: When were pianos invented?
U2: Yes.
ARI: Pianos were invented in the early 18th century by Bartolomeo Cristofori, an Italian instrument maker.
U2: Do you need to sit down? [It cannot be ARI that needs a seat, so ARI does not respond]
U1: Yes, a seat would be nice.
U2: Where can we sit down? [Joint goal indicates ARI must be the addressee ]
ARI: There are chairs in the waiting room. Please, take a seat. Let me know if you need anything else.

4.4 Performance of the Conversational System

Early analysis suggests the introduction of an LLM approach has resulted in a significant improvement in the dialogue
system performance. Table 4.7 shows the error rates on a test set of 100 ’in-domain’ utterances i.e. utterances that
are within scope for both systems. These were designed to provide a broad representation of the modular system’s
capabilities and were a mixture of hand-crafted and ’real’ utterances gathered in previous data collections in the hos-
pital. The table shows a significant reduction in error rates using the LLM approach, in both English and French. The
performance in each case is slightly worse in French, likely reflecting the dominance of the English language in the
data used to train LLMs.

Table 4.7: System Performance (100 In-Domain Utterances)

Error Rate French English
(Wrong or No Information)

Modular System 38.5% 29.2%
LLM System 15.6% 11.5%

We plan to report more detailed evaluation results at the end of the project, in D5.5.

D5.4: Multi-party conversational system in target environments Page 21 of 26



This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 871245.

5 Implementation

5.1 Outputs

The software modules described in this deliverable will be made available on the SPRING project Gitlab repositories
for Work Package 5 [45] and Work Package 3 [43] and 4 [44]. These will be available to the public for the duration
specified in the SPRING project proposal.

Software repositories for the conversational system modules, described in Chapter 4 can be found on [45]. Soft-
ware repositories for the multi-party ASR module and audio pipeline, described in Chapter 3 can be found on [43, 44].

As per European Commission requirements, the repositories will be available to the public for at least four years af-
ter the endof the SPRINGproject. People can request access to the software to the project coordinator at spring-coord@inria.fr.
The software packages use ROS (Robotics Operating System) [46] to communicate with each other and with themod-
ules developed in the other work packages.

5.2 LLM Server

While most modules implemented in SPRING, such as the ASR, TTS, high-level planner, and chatbot interface (see
Figure 4.2) are deployed either in the ARI robot itself or in the accompanying PC server at the Broca hospital day
care clinic, the LLM portion of the Conversational System has been implemented separately in remote access servers
running on HWU GPU machines.

Figure 5.1: Network architecture for remote calls to the LLM server from Broca Hospital.

The Vicuna-13b1 model that is deployed for SPRING can be found on HuggingFace’s lmsys organization. Vicuna
v1.5 is fine-tuned from Llama 2with supervised instruction fine-tuning. The training data is around 125K conversations
collected from ShareGPT.com.

The LLM server API has been built employing FastChat2 providing a distributed multi-model serving system with
web UI and OpenAI-compatible RESTful APIs. For running inference on our LLM, we use the vLLM3 library. vLLM offers
efficient management of attention key and value memory with PagedAttention, a state-of-the-art serving throughput.

1https://huggingface.co/lmsys/vicuna-13b-v1.5
2https://github.com/lm-sys/FastChat
3https://github.com/vllm-project/vllm
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