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Abbreviations

Abbreviation Meaning
ABUS Agenda-Based User Simulation

ARI Social assistive robot used by the SPRING project
CCG Conversational Content Generator
DM Dialogue Manager
DOF Degree Of Freedom

GCFF Graph-Cuts for F-Formation algorithm
GUI Graphical User Interface

HWU Heriot-Watt University (SPRING Partner)
INRIA Institut National de Recherche en sciences et technologies du numérique (SPRING Partner)

MPISim Multi-Party Interaction Simulator
MUSE Multi-User Simulation Environment
NLG Natural Language Generation
NLU Natural Language Understanding
NUS Neural User Simulator
PAL PAL Robotics (SPRING Partner)
ROS Robot Operating System

SPRING Socially Pertinent Robots in Gerontological Healthcare
WP Work Package (of the SPRING project)
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Executive Summary

This deliverable reports the results of SPRING task T6.2: Generation of multi-party situated interactions. The goal of
the task is to provide a simulation environment for interactions between ARI, the robot used by the SPRING project,
and human agents. The simulation allows to generate plausible human behavior (for example gaze), the synthesis
of high-level sensor perception (for example the perception of emotions), the high-level motion control of ARI (for
example to join a group of human agents), and the simulation of conversations between ARI and humans. The aim of
the simulation is to support the tasks of SPRINGwork packagesWP 5 (Multi-User Spoken Conversations with Robots)
andWP 6 (Learning Robot Behaviour) by allowing the training and testing of their modules in a simulation environment
to reduce the amount of time intensive real world experiments. The developed software consists of three modules:
1) a 3D Physical Robot Simulation1 used for the realistic simulation of ARI, 2) a Multi-Party Interaction Simulation2

for abstract simulations of ARI and its physical and verbal interaction with humans, and 3) a Conversational Content
Generator3 that simulates realistic dialogues between ARI and humans. The software is open access to the public at
least until 4 years after the project ends.

1http://wiki.ros.org/Robots/ARI
2https://gitlab.inria.fr/spring/wp6_robot_behavior/multiparty_interaction_simulator
3https://gitlab.inria.fr/spring/wp5_spoken_conversations/conversational-user-bot-simulator
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1 Introduction

The development of software for generating multi-party situated interactions is the goal of SPRING task T6.2 and part
of WP 6 (Robot Learning Behavior). The goal of the software is to synthesize data that can be used for the training and
evaluation of themachine learning architectures developed in T6.1 (Deep Architectures for Conversational Systemand
Non-verbal Behaviour) [28] and for the conversational and high-level robot task manager of WP 5 (Multi-User Spoken
Conversations with Robots) [26, 27]. The software was developed based on the specifications formulated in SPRING
Deliverable D6.2 (Specifications of the generator of situated interactions) [29]. The software is composed of three
modules:

1. 3D Physical Robot Simulation: The simulation provides a realistic physical 3D model of SPRING’s ARI4 robot [2]
to have a testbed for low level controller and perception modules.

2. Multi-Party Interaction Simulation: An abstract simulation of ARI and humans in a 2D environment to simulate
physical and verbal interaction scenarios between them.

3. Conversational Content Generator: A generator of realistic dialogues between humans and ARI.

These modules are introduced in the next chapters individually.

Figure 1.1: The ARI robotic platform used for the SPRING project. Figure taken from [2]

4https://pal-robotics.com/robots/ari/
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2 3D Physical Robot Simulation

A detailed physical 3D model of ARI was developed for the Gazebo5 simulator by PAL. It models ARI’s body and
most of its actuators and sensors. Gazebo is compatible with ROS6 and all components of the model use the same
communication interface as is used on the ARI robot. Themodel allows to testmotion controllers and sensormodules
developed during the SPRING project. The simulation and its documentation can be found at and is at least open
access to the public until 4 years after the project ends:

http://wiki.ros.org/Robots/ARI

The 3D model (Fig. 2.1) incorporates the following features:

• realistic model of ARI’s 3D body

• actuators:

– head controller (2 DOF7: pan, tilt)
– left arm controller (4 DOF: shoulder, elbow)
– right arm controller (4 DOF: shoulder, elbow)
– left hand controller (1 DOF)
– right hand controller (1 DOF)
– mobile base controller (2 DOF)

• sensors:

– head camera (Sony 8 MegaPixel RGB)
– torso front camera (Intel RealSense D435i, RGBD + IMU)
– torso back camera (Intel RealSense T265, RGBD + IMU)
– front RGB-fisheye camera (ELP camera)
– rear RGB-fisheye camera (ELP camera)
– microphone-array

A set of Gazebo worlds that can be used as simulation environments for the ARI robot are publicly available at:

https://github.com/pal-robotics/pal_gazebo_worlds

Tutorials to learn how to use and manipulate the simulated model of the robot can be found at:

http://wiki.ros.org/Robots/ARI/Tutorials

The tutorials are used as a basis to start learning to program for ARI inside the SPRING project.

5https://gazebosim.org
6https://ros.org/
7DOF : Degree of freedom
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Figure 2.1: Simulation of ARI in the Gazebo environment. The white lines depict the field of vision of the forward
positioned RGB-D camera.
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3 Multi-Party Interaction Simulation

3.1 Overview

The multi-party interaction simulation (MPISim) is a high-level, abstract simulation of ARI and its environment includ-
ing humans. It is developed by INRIA. Its purpose is to provide a simulation environment to train and test the high-level
decision and behavior components of the SPRING project. It abstracts the environment using a 2D simulator. This
reduces the complexity of creating interaction scenarios and having an improved computational performance com-
pared to using the 3D simulation of ARI in Gazebo (Sec. 2). The relevant properties of ARIs environment and their
abstract representations which form the input to higher decision and behavior components can be simulated. These
include:

• position and orientation of ARI, humans, groups, and other objects such as walls, chairs, ...

• soft-biometric patterns of humans, such as age, gender, ...

• if humans wear a face mask or not

• gaze behavior of humans

• speech

The simulator is designed to be modular and to be easily extensible. All simulation elements (ARI, humans, ob-
jects) and the components that define their behavior (movement, gaze, speech, ...) can be easily added, removed,
or changed. The code and documentation of the MPISim can be found at and is open access to the public at least
until 4 years after the project ends:

https://gitlab.inria.fr/spring/wp6_robot_behavior/multiparty_interaction_simulator

The next section describes the general architecture of the MPISim. It is followed by sections that introduce the in-
dividual simulator elements: humans, human groups, ARI, the graphical interface (GUI), and how to script the behavior
of the simulation.

3.2 Architecture

The simulator is an agent-based [14] 2D simulation developed for Python (Fig. 3.1). The physical simulation is done
with PyBox2D8 which is based on the PyGame9 framework. It simulates several agents (ARI and humans) and ob-
jects. The behavior of agents and objects can be controlled via Scripts. Agents and objects have different properties
and Components. The Components are used to control agents, generate their behavior such as gaze, and how they
sense their environment. Components can be added in a modular way. Scripts control the simulation and give agents
commands which they execute. Additionally, the simulation can have background Processes, for example, the visu-
alization of the simulation. The next sections introduce these different elements: Simulation, Objects, Components,
Scripts, and Processes.

Simulation The simulation provides the top layer interface to the simulator. It holds all other elements: Objects with
Components, Scripts, and Processes. The simulation provides the functionality to run and reset a simulation. The
physical simulation of 2D bodies including their movement and collisions is done via the PyBox2D framework.

A simulation runs in discrete steps. During each step the simulation calls a step method of each element of the
simulation so that it can advance. First, the step method of Objects and their Generator Components are called.

8https://github.com/pybox2d/pybox2d
9https://www.pygame.org
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Simulation

List of Objects

id 100: Wall (Object)

id 301: Human (Object)

List of Components

GazeGenerator (Component)

gaze direction: 	 10.5
gaze target: 	 	 id 300


SpeechGenerator (Component)

2D position: 	 	 [4.5, 3.5]

body orientation: 	 30.3

age: 	 	 	 67

gender: 	 	 	 female
emotion: 		 	 neutral
has mask:	 	 True


id 300: Human (Object)

id 101: Wall (Object)

id 400: ARI (Object)

List of Components

SpeechSensor (C)

SpeechGenerator (Component)

HumanTrackingSensor (C)

SocialMPCNavigation (C)

EmotionSensor (C)

human id 300: 	 happy
human id 301: 	 neutral


SoftBioMetricsSensor (C)

GazeSensor (C)

2D position: 	 	 [4.5, 3.5]

body orientation: 	 -24.8

head orientation: 	 [0, 10]

List of Scripts

id 600: GroupDiscussionScript (Script)

id 400: ARI (Reference)

id 601: GroupNavigation (Ref)

id 601: GroupNavigation (Script)

List of Agents

id 300: Human (Reference)

id 301: Human (Reference)

List of Processes

GUI (Process)
HumanNavigation (Component)

MapSensor (C)

Figure 3.1: Architecture of the MPISim. The Simulation holds a list of Objects that represent physical entities such as
walls, humans, and ARI. It also has a list of Scripts that define the behavior of the objects and a list of Processes such
as the GUI.

These are responsible to generate the behavior, for example, to generate the movement in humans. Next, the Sensor
Components of Objects are called which are usually responsible to sense properties of other Objects, for example,
the ARI agent tracking the position of human agents around it. Finally the step method of Scripts and Processes are
executed.

Objects An Object O represents a physical entity in the simulated environment. These include ARI, humans, walls,
obstacles and other objects. Each Object has an unique identifier i ∈ N+. Each Object is connected to one or several
PyBox2D Bodies B = {b1, . . . , bm} used to simulate their physical properties, such as mass and collision behaviors.
Objects also have a list of connected Components C = {c1, . . . , cn}. Components are modules that provide function-
alities to an Object, such as producing gaze behavior or emotions for humans.

Components A Component C represents the functional elements of an Object. For ARI, these are, for example, its
navigation control and its sensors such as the detector for soft-biometric patterns (age, gender). For humans, these
are, for example, their movement control and their property generators such as their gaze behavior. Components are
designed to be modular, so that they can be added and removed from Objects. This allows to create simulations
where only the necessary parts are modelled. For example, a specific simulation might not require the gaze behavior
of humans, thus all humans can be created without the Component for gaze generation. Thismodular philosophy also
allows to easily create and add new Components, for example, an improved version of the gaze behavior to produce
more natural gaze behaviors.

Scripts A Script is used to control the behavior of the simulation, including its Objects (ARI, humans, obstacles) and
possibly other Scripts. Each Script has an unique identifier i ∈ N. Usually Scripts also have a list of Objects which they
control, for example, human agents that have a group conversation. Scripts can create Objects or remove them from
the simulation. They can also create subscripts, which control, for example, only a subgroup of humans. Section 3.7
explains inmore detail howScripts are used to control scenarios. The control of the position andorientation of humans
in a conversation group are also done via a special GroupNavigation Script, which is further explained in Section 3.4.

Processes Processes represent background processes. For example, the GUI (Sec. 3.6) is a Process. They can also
be used to provide shared computational functions over several other entities, for example, to create a single map of
the environment that is used for the navigation by all robotic agents without recreating such a map for each agent.
For this purpose, a single Process is created that generates such a map which is then accessed by all agents.
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3.3 Human Agents

Human agents are simulated as Objects. Each human H has the following properties:

• a unique identifier: i ∈ N+

• 2D body position: p ∈ R2

• body orientation: θ ∈ [−π, π]

• soft-biometric patterns: age (R+), gender ({female, male, non-identified})

• does the person wear a mask: {true, false}

• emotions: {neutral, happy, angry, disturbed}

• parameters for the movement control:

– step length: η ∈ R+

– goal distance threshold: ∆G ∈ R+

– personal distance: ∆p ∈ R+

Depending on the requirements additional properties can be assigned to humans (or Objects in general), such as their
role (doctor, patient, ...).

The movement of people can be controlled by different methods. Moreover, different Components exist that can
be added to a human agent to define specific behaviors. The following sections introduce the movement control and
the Component for the gaze behavior generation.

3.3.1 Movement and Navigation

The movement behavior, i.e. the position and body orientation, of a human agent can be controlled via different meth-
ods:

• defining directly its position p and orientation θ

• defining a linear velocity on the position vp ∈ R2 and orientation vθ ∈ R

• the HumanNavigation Component where a goal position pG ∈ R2 and orientation θG ∈ [−π, π] that should be
reached can be defined

• the GroupNavigation Script (Sec. 3.4) to control the agent as part of a conversational group

The HumanNavigation Component allows to define a goal position and orientation. It uses a force model that is
similar to the social force model [15] used for the group navigation (Sec. 3.4). It computes forces that change the
position (fH) and orientation (dH) of a human H . The force on the position fH is given by:

fH = fH
goal + fH

repulsion (3.1)

where the goal force fH
goal pushes towards the goal position and the repulsion force fH

repulsion creates a repulsion to
other nearby agents to avoid collisions with them. The force on the orientation dH orientates the agent towards its
movement direction until the goal position is reached. Then, it lets the agent orientate towards the goal orientation.
It is defined by:

dH =

{
θH − θHmove | if ||pH − pG|| > ∆G

θH − θG | otherwise
(3.2)

where θH is the current orientation of agent H , θHmove ∈ [−π, π] is the current movement direction and ∆G ∈ R+ is a
threshold that defines when the agent reached the goal position. The forces are used to update the position of the
human and its orientation by:

pHt+1 = pHt + ηfH (3.3)

θHt+1 = θHt + ηdH (3.4)

where η ∈ R+ is a positive step length. The next sections describe the goal and repulsion force on the agents position
in detail. The index H of the human agent for which the forces are calculated is dropped for convenience.
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a) Goal Force b) Repulsion Force

Personal Space

Figure 3.2: The goal force (a) attracts the human agent towards the goal position. The repulsion force (b) repels the
agent from nearby agents that are too close.

Goal Force: The goal force fgoal (Fig. 3.2, a) drives the human agent towards its goal position pG:

fgoal = min

(
1,

||pG − p||
∆G

)
pG − p

||pG − p||
(3.5)

The force is modulated by its distance to the goal position (||pG − p||) and a threshold ∆G ∈ R. If the distance to the
goal is larger than ∆G then the force has a magnitude of 1, otherwise the magnitude is linearly lowered to 0 until the
goal is reached.

Repulsion Force: The repulsion force frepulsion (Fig. 3.2, b) creates a minimal distance between humans so that they
avoid to bump into each other and maintain their personal space. The force is calculated based on the position of
other agents (humans or robots) that are inside the personal area of the current human. The personal area is a circle
with a radius equal to the personal distance ∆p ∈ R. The force is given by:

frepulsion = −(∆p − dmin)
2 R

||R||
(3.6)

where dmin is the distance to the closest individual. The sum of the vector differences between the position of the
agent p ∈ R2 and each of the Np agents positions pi ∈ R2 inside its personal area is given by:

R =

Np∑
i

(pi − p) (3.7)

3.3.2 Gaze Behavior

The gaze of humans can be controlled via the GazeGenerator Component. Properties of the Component:

• gaze direction: α ∈ [−π, π]

• gaze target: identifier of a person or object (N+)

• properties to define a probabilistic gaze behavior model:

– gaze targets: list with identifiers of potential targets GT = {i1, . . . , im} and their probabilities
PT = {Pr(i1), . . . ,Pr(im)}, or a distribution DT over directions

– gaze change rate parameter: λ ∈ R+

The gaze direction and the gaze target can be either set directly or by a probabilistic gaze model. The model takes
either a list of potential gaze targets as inputs or a distribution over gaze directions. For gaze targetsGT = {i1, . . . , im}
also a list of their individual probabilities PT = {Pr(i1), . . . ,Pr(im)} must be provided with

∑m
j=0 Pr(ij) = 1. A new

gaze target is then randomly chosen according to the probabilities. The gaze direction α ∈ [−π, π] is then the direction
to the sampled target. Alternatively to a list of targets, a distribution over gaze directions can be provided from which
the direction is sampled: α ∼ DT . In this case, no gaze target is defined. The gaze is then kept on the sampled target

D6.4: Software for Generating Multi-Party Situated Interactions Page 12 of 29
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until it changes according to a Poisson process. Thus, the gaze duration∆t ∈ R+ (in seconds) follows an exponential
distribution Exp(λ) having a probability density function of:

Pr(∆t) = λ exp−λ∆t (3.8)

where λ ∈ R+ is the rate parameter controlling how long a gaze duration is on average. The average time is equal to
λ seconds.

3.3.3 Speech

Humans can generate speech using a SpeechGenerator Controller. The Controller has the following properties:

• current speech act: string which identifies the act such as: "WELCOME", "QUESTION:NAME", or "GOODBYE"

• current speech content: list with words of the speech act ("Bonjour. Je suis Alan.")

• current word: string

• history about: speech act, speech content

• word per minute rate: wpm ∈ R+

The Controller can be used to generate the speech by setting the current speech act and its content. The generator
then plays the speech content word by word depending on the word per minute rate. The generator has a history
of the speech acts and contents it has generated in the past together with the start and end time of each speech
act. The Conversational Content Generator (Sec. 4) can be used to generate realistic speech acts and dialogues via
the SpeechGenerator Controller by setting the speech act and content of human agents and ARI. See Sec. 3.7 for an
example on how to use the SpeechGenerator.

3.4 Human Group Behavior

Several human agents can be organized in groups using the GroupNavigation Script. The Script controls the move-
ment and orientation of their bodies. The group behavior is based on the concept of F-formations [7]. F-formations
describe the arrangement of individuals in a group with respect to their positions and orientations. They are defined
by three social spaces: o-space, p-space, and r-space (Fig. 3.3, a). The o-space is the empty space in the group center
around which the individuals of a group are positioned. The p-space is the space in which the members of a group
are positioned. The r-space is the space outside the group. A group can have different spatial arrangements: a) cir-
cular, where people are positioned in a circle around the o-space, b) vis-a-vis, where two people face each other, c)
L-arrangement, where two people are positioned next to each other with a 90 degree angle, and d) side-by-side, where
people are standing closely next to each other, often to look at a common object of interest.

Figure 3.3: Overview of different F-formations that describe group formations. Each formation is defined by a o-space
(orange), the space in front of all people of a group where they interact, a p-space (green) where they are located, and
a r-space (blue), the space surrounding the group. Figure taken from [19].
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3.4.1 GroupNavigation Script

For each group G exists a GroupNavigation Script which has the following properties:

• A unique identifier: i ∈ N+

• A list of human agents that are part of the group: A = {H1, . . . ,Hm}

• The 2D goal position of the o-space center point: o ∈ R2

• The radius of the o-space: s ∈ R

• The personal distance of people: ∆p ∈ R

• The social distance of people: ∆s ∈ R

• The step length to update the agents position and orientation: η ∈ R

The GroupNavigation Script models the movement of the human agents in its group via the social force model by [15].
The model uses three principle forces that are summed to define the translational (F ∈ R2) and rotational (D ∈ R)
movement of each human:

fH = fH
repulsion + fH

equality + fH
cohesion (3.9)

dH = dHequality + dHcohesion (3.10)

The repulsion force is responsible for creating a minimal distance between humans. The equality force creates an
o-space of the group by forcing the humans to group around it. Finally, the cohesion force attracts members of a
group towards the group. The final forces are used to update the position of the human and its orientation by:

pHt+1 = pHt + ηfH (3.11)

θHt+1 = θHt + ηdH (3.12)

where η ∈ R+ is a positive step length. The next sections describe each principle force in detail. The index H of the
human agent for which the forces are calculated is dropped for convenience.

Repulsion Force: The repulsion force frepulsion creates a minimal distance between humans so that they avoid to
bump into each other and maintain their personal space. It is the same force as used for the navigation of single
human agents (Eq. 3.6). Please see Section 3.3.1 for its details.

a) Equality Force b) Cohesion Force

Social Space

o-space

Figure 3.4: The equality force (a) attracts or repels human agents to form a group with nearby group members. The
cohesion force (b) attracts or repels all agents to position around the o-space of the group.
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Equality Force: The equality force fequality is either attractive or repellent (Fig. 3.4, a). It forces the agent to position
itself inside the groups p-space surrounding its o-space. The force depends on the agent’s distance to the group
center c ∈ R2 of all other group members that are in the nearby social space of the agent. The social space is a
circular area around the agent with radius ∆s ∈ R, its social distance. The group center is calculated based on the
position pi ∈ R2 of each of the Ns agents inside the agents social space, itself included:

c =
1

Ns + 1

(
p+

Ns∑
i

pi

)
(3.13)

Based on the center, the mean distance m of all agents to the center can be computed:

m =
||p− c||
Ns + 1

Ns∑
i

||pi − c|| (3.14)

The center and the mean distance are used to define the equality force:

fequality =

(
1− m

||c− p||

)
(c− p) (3.15)

The equality orientation is given by:

dequality =

Ns∑
i

(pi − p) (3.16)

Cohesion Force: The final force, the cohesion force fcohesion, pulls agents towards the o-space center of the group
o ∈ R2 (Fig. 3.4, b). It depends on the difference and distance between the o-space center and the agents position
p ∈ R2:

fcohesion = α

(
1− s

||o− p||

)
(o− p) (3.17)

where s ∈ R is the radius of the o-space. The scaling factor α = Na

Ns+1 reduces the magnitude of the force if the
agent is surrounded by other agents of its group. The cohesion force is strongest for agents that are isolated from its
conversation group. The cohesion orientation is given by:

dcohesion =

Na∑
i

(pi − p) (3.18)

3.4.2 Simulation Results

An example of a simulated group of human agents is illustrated in Fig. 3.5. The group consists of three human agents
(ids 11, 33, and 11) starting in the middle of the left room (Fig. 3.5, a). They are assigned to a single GroupNavigation
Script and its group center was set to a position at the top of the room next to the couch. After starting the simulation
all three agents move towards the goal location (Fig. 3.5, b). Two agents (ids 33 and 11) arrive at first at the group
location and form a F-formation in a L-arrangement (Fig. 3.5, c). When the third human agent arrives they make space
for it by shifting to the top and all agents form a F-formation in a circular arrangement (Fig. 3.5, d).
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a) Start position b) Movement to group position

c) Grouping d) Final group position

Figure 3.5: Group behavior of three human agents (id: 11, 30, 33) that start in the middle of the left room. The group
center is at the right, top location of the room.
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3.5 ARI Agent

The ARI agent is simulated via an Object. It has Components that generate its sensory input from the environment
and that control its movement and speech behavior. The ARI Object has the following properties:

• a unique identifier: i ∈ N+

• 2D body position: p ∈ R2

• 2D body orientation: θB ∈ [−π, π]

• pan head orientation: θH ∈ [−π, π]

Sensor Components As part of the SPRING project (work packages WP2, WP3, and WP4), several perception mod-
ules are developed for the ARI robot that collect a variety of information:

• occupancy map of the environment (based on visual mapping from WP2 and torso RGB-D camera)

• 3D position tracking of humans in the environment (via the front fish eye camera)

• identification of different soft-biometric patterns including age or gender (via the head camera)

• identification if a mask is worn (via the head camera)

• face identification (via the head camera)

• auditory recording of speech from multiple persons with automated speech recognition (ASR), i.e. speech to
text processing (via the microphones)

The MPISim provides Sensor Components for ARI that simulate the output of these modules based on the simulated
2D environment. Sensor Components are generally executed after the environment step and after the Generator Com-
ponents of human agents are executed. They access the generated properties, for example, the gaze of a human, and
sense it so that higher decision making modules can access this data. An important part of the Sensor Components
is to decide if the properties of a certain human in the environment can be sensed, for example, if mask is worn can
only be identified if a human is facing ARI. Moreover, they are used to introduce perception errors, for example, an
error about the position of humans. The output of Sensor Components follow the ROS4HRI10 standard developed by
PAL that is used for the SPRING project.

Generator Components On the robotic ARI platform, higher decision making modules control the robot through
modules that are developed during the SPRING project (work packages WP6 and WP7). The MPISim provides two
Generator Components for the ARI agent to replicate their behavior. The first is the SocialMPCNavigation Component
that can be used to navigate the robot to a goal position, or to join humans and groups. The second component is
the SpeechGenerator used by ARI to talk. It is the same SpeechGenerator Component as human agents use which is
described in Section. 3.3.3.

The following sections describe the different Sensor and Generator Components of the ARI agent in detail.

3.5.1 Environment Mapping

The MapSensor Component creates an occupancy map [13]. The occupancy map is a 2D map of the environment. It
discretizes the space where each of its cells defines if this place is occupied by an obstacle or not (Fig. 3.6). On the
ARI robot this map is created using the visual mapping procedures developed in WP2 (see SPRING Deliverable D2.2
[21], Chapter 3). Moreover, the map is updated based on the input from the RGB-D camera in the torso of ARI using the
RTAB-Map framework11 [10]. The MapSensor Component replicates this mapping process. For this purpose, it uses
the a visualization of all objects in the simulation created with the PyGame framework12 (Fig. 3.6, b). Please note,
other agents such as humans are not part of the occupancy map as they are tracked separately. Based on the visual-
ization, the occupancy of each cell in the map is computed (Fig. 3.6, c). The map is used by the SocialMPCNavigation
Component (Sec. 3.5.5) for the navigation.

10http://wiki.ros.org/hri
11https://introlab.github.io/rtabmap/
12https://www.pygame.org
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a) Example Scene b) Occupancy map

Figure 3.6: The occupancy map (b) of a simulated environment (a) defines objects that ARI has to avoid to collide
with during its navigation. It entails all static objects such as walls and furniture (green). Agents (red) are not part of
the occupancy map and tracked separately.

3.5.2 Tracking of Humans and Groups

One of the major task on the ARI robot platform is the identification and tracking of humans and groups of humans.
For this purpose the front fish eye camera is used that is located in the torso of ARI. It has a forward viewwith an angle
of 180 degrees. Based on the captured images the bodies of humans are detected and tracked using a deep neural
model (see SPRING Deliverables 3.1 [22] and 3.2[23]). The tracking assigns each human body a consistent identifier
over several time steps even if occlusions occur or if the person leaves shortly the field of view. The camera images
are also used to identify the 2D posture of human bodies with the OpenPose13 framework. The 2D posture is used to
identify their 3D position and orientation.

In the MPISim the HumanTrackingSensor Component replicates this tracking process. It first identifies which hu-
man agents are in the field of view of ARI. This is done using raycasting with the Box2D14 framework to detect the
objects ARI can see within its field of view of the fish eye camera (Fig. 3.7). As the simulation has the unique identifiers
i of human agents, these are used to generate consistent tracking ids even if occlusions occur or a human leaves the
field of vision for some time. An error model can be applied to introduce perception errors that occur on the ARI robot
platform during the tracking process. These errors include:

• identification errors: a person in the field of vision is not identified and tracked

• re-id errors: a person switches its id after occlusions, reentering the field of vision, or spontaneously

• position errors: the positions of humans are not correctly identified

Besides the tracking of individuals, a group detectionmodule on the ARI robot platformalso detects conversational
groups. The detection is based on the F-formation theory [7] about the positioning of humans inside a group. See
Figure 3.3 for an overview over different formation types. The Graph-Cuts for F-formation (GCFF) algorithm [19] is
used to detect groups based on the position and body orientation of humans. In theMPISim theGroupDetectionSensor
Component replicates this group detection process. It receives as input the perceived 2D position and orientation from
the HumanTrackingSensor Component. It then uses the GCFF algorithm for the detection of groups. The algorithm is
explained in detail in SPRING Deliverable D4.2 [25]. It outputs groups and their center position, i.e. the center point of
their o-space.

3.5.3 Detection of Faces and Related Human Properties

Modules that concentrate on analysing the head and faces of humans are used on the robotic ARI platform to extract
several types of information (see SPRING Devliverables D4.1 [24] and D4.2 [25] for details) such as:

13https://cmu-perceptual-computing-lab.github.io/openpose
14https://www.iforce2d.net/b2dtut/raycasting
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Figure 3.7: The raycasting procedure identifieswhich humans and other objects are visible for the front fish eye (yellow
rays) and the head camera (grey rays) of ARI. Several rays are used that start at ARI and are projected outwards within
the viewing angle of each camera. The objects that are first hit by the rays (yellow and grey dots) can be seen by the
respective camera. In this example the fish eye and head camera can both see human 40. Only the fish eye camera
can see human 11. Human 30 and 33 are not visible for ARI.

• face identification

• soft-biometric patterns including age or gender

• identification if a mask is worn

• emotions

• gaze

For this purpose the head camera of the ARI robot platform is used which has a viewing angle of 62 degrees. In the
MPISim several Sensor Components replicate the identification of these properties. All Components first need to
identify if a human face can be seen by the head camera. The same raycasting method as for the identification of
human bodies with the front fish eye camera is used (Fig. 3.7). Furthermore, the orientation θ of the human agents
that are in the field of view is used to identify if their faces are visible or if they are turned away from ARI. Different
components are then used to extract specific information from the detected humans:

• FaceTrackerSensor Component: Identifies a person based on its identifier.

• SoftBioMetricsSensor Component: Extracts the age and gender of a person.

• FaceMaskSensor Component: Detects if the person wears a face mask.

• EmotionSensor Component: Detects the emotion of a person.

• GazeSensor Component: Identifies the gaze direction α and the ID of the gaze target from the GazeGenerator
Component (Sec. 3.3.2).

Each component can have an error model to replicate potential perception errors. The models are probabilistic and
can take into account the distance to the human agents, their orientation in relation to ARI, or if they are only partially
visible due to occlusions or because they are at the border of the visual field.
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3.5.4 Speech Detection

The ARI robot processes speech signals from multiple persons with its microphone array located in the torso of the
robot. An automated speech recognition (ASR)module translates the recorded conversations into text. In theMPISim
the ARI agent can recognize spoken speech in its surrounding via the SpeechSensor Component. Properties of the
SpeechSensor:

• max listening distance d ∈ R+

• for each human in the surrounding:

– current speech act
– current word
– history about: speech act, speech content

The Component provides the same output as the ASR of the ARI robot. It identifies all humans in the surrounding of
the ARI agent within themax listening distance d. Humans that are occluded bywalls, i.e. which are in a different room,
are ignored. The SpeechSensor then reads out the current speech act and the current word from the SpeechGenerator
Component (Sec. 3.3.3) of the identified humans. As for the other Sensor Components, an error model can be used
to introduce perception errors such as wrongly perceived words or that the speaker is misidentified.

3.5.5 Movement and Navigation

The ARI agent can be either controlled directly or by using the SocialMPCNavigation Component that replicates the
navigation module on the ARI robot. Controlling the ARI agents base, i.e. its body, by defining a linear velocity (vp ∈
R) and a angular velocity (vθB ) that control the 2D body position p towards the current orientation θB and the body
orientation θB respectively. The pan of the head orientation (θH) can be controlled via a pan velocity (vθH ∈ R).

Although a direct control exists, themore commonway of controlling the ARI agent is via the SocialMPCNavigation
Component. It replicates the interface and functionality of the social model predictive controller (SocialMPC) used
by ARI’s Behavior Manager for human-aware navigation (see SPRING Deliverable D6.3 [30] for more details). The
SocialMPC allows to define either a goal position where ARI should go or a human agent, or a group that ARI should
join. It then controls ARI through the environment taking into account obstacles, human agents, and their social
space [5]. The SocialMPCNavigation Component replicates this behavior by using the SocialMPC for its navigation
in the simulation environment. Its inputs are the position p and orientation θB of the detected humans and groups
coming from the HumanTrackingSensor Component and the occupancy map of the environment from theMapSensor
Component (Fig. 3.8, b). The occupancymap defines where objects are located which ARI has to naviage around. The
positions and orientations of humans and groups are used to compute their social spaces which ARI should avoid to
intrude (Fig. 3.8, c). A detailed description of the SocialMPC is provided in SPRING Deliverable D6.1 [28].

a) Example Scene b) Local Occupancy Map c) Social Spaces

Figure 3.8: The SocialMPCNavigation uses a local occupancy map (b) around ARI that is based on the global occu-
pancy map from the MapSensor (Fig. 3.6) to avoid obstacles. Based on the detection of humans and groups by the
HumanTrackingSensor, their social spaces aremodeled (c) which ARI should avoid to enter. The red dot in (b, c) shows
the location of ARI.
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3.6 GUI

The simulator has a graphical user interface (GUI) as a method to visualize it. The interface is based on the PyGame15

framework. The GUI functions as a Process. It allows to visualize the following properties (Fig. 3.9):

• the PyBox2D bodies of all Objects including ARI, human agents, and objects such as walls or furniture

• properties of objects such as their identifier or the age, gender, or role of human agents

• the current dialog of humans and ARI

Figure 3.9: The GUI of the simulation. Static objects such as furniture andwalls are drawn in green. Human agents and
ARI are red. Hovering with the mouse over an agent shows its properties, here for Human 40. The dialogue between
agents is shown in the lower, left corner.

15https://www.pygame.org
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3.7 Scripting Interaction Scenarios

Interaction scenarios can be scripted via Scripts. Scripts are Python classes that have access to the simulation and all
its elements, including Objects, their Components, Processes, and other Scripts. At each iteration of the simulation,
the Script will be called (step method) after all other elements have been executed for this step. The Script has then
the ability to check their properties and give them new commands, for example, to give a human a new goal position.
It can also add or remove Objects.

As an example, the follwoingGroupDiscussionScript simulates an interactionwhere ARI joins a group of two people
and has a short conversation with them. First, we set up the simulation by initializing it with a room having 4 walls. We
add the GroupDiscussionScript, and runs the simulation, which will then use the GroupDiscussionScript to generate
our interaction scenario:

import mpi_sim # import the MPISim Python package

# create an empty room
simulation = mpi_sim.Simulation(

objects = [
{’type’: ’Wall’, ’position ’: [6., 3.], ’orientation ’: 0., ’height ’: 6.}, # east
{’type’: ’Wall’, ’position ’: [0., 3.], ’orientation ’: 0., ’height ’: 6.}, # west
{’type’: ’Wall’, ’position ’: [3., 6.0], ’orientation ’: np.pi / 2, ’height ’: 6.2}, # south
{’type’: ’Wall’, ’position ’: [3., 0.0], ’orientation ’: np.pi / 2, ’height ’: 6.2} # north

],
processes = [{’type’: ’GUI’}, {’type’: ’Mapping ’}]

)

# create the script and add it to the simulation
script = GroupDiscussionScript ()
simulation.add_script(script)

# run the simulation , until the script stops the simulation
simulation.run()
simulation.close()

The GroupDiscussionScript itself adds all agents that interact and controls their behavior. First, when it is added
to the simulation (addmethod) it creates two human agents (Paul and Irene) and adds them to a group. Furthermore,
it adds ARI and defines that ARI should join the group by setting one of its members (Irene) as its navigation goal.

The agents are then controlled at each simulation step (stepmethod) depending on the current state of the inter-
action. The script checks if certain conditions are fulfilled before going to the next state (similar to finite state ma-
chines16). After ARI reaches the group (closer than 1.5m to Irene), it welcomes them and asks if it can help (speech
act = ’QUESTION:HELP’). After ARI asked his question (checked via previous_speech_act == ’QUESTION:HELP’),
Irene is asking for the time. ARI answers and they end the conversation. Finally, ARI leaves the group by navigating to
another point in the environment. Fig. 3.10 illustrates the behavior of the script.

import mpi_sim
import numpy as np

class GroupDiscussionScript(mpi_sim.Script):

def add(self):
""" Define what to do when script is added to simulation."""

# add two humans (paul and irene)
self.paul = mpi_sim.objects.Human(position=[0., 0.], orientation=0.)
self.simulation.add_object(self.paul)
self.irene = mpi_sim.objects.Human(position=[3., 0.], orientation=0.)
self.simulation.add_object(self.irene)

# add ARI
self.ari = mpi_sim.objects.ARIRobot(position=[1., 4.], orientation=-3 / 4 * np.pi)
self.simulation.add_object(self.ari)

# create a group
self.group = mpi_sim.scripts.GroupNavigation ()

16https://en.wikipedia.org/wiki/Finite-state_machine
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self.simulation.add_script(self.group)
self.group.add_agent([self.paul , self.irene])

# define a goal for the group and let ari join the group by giving on person as target
self.group.set_group_center([2.0, 3.0])
self.ari.set_human_go_towards(self.irene)

self.status = ’grouping ’

def step(self):
""" Define what to do in each time step."""

# if ARI is reached: ask if he can help
if self.status == ’grouping ’ and mpi_sim.utils.measure_distance(self.irene , self.ari) < 1.5:

self.ari.speech.say(’Hello , I am ARI. Can I help you?’, act=’QUESTION:HELP’)
self.status = ’ask_help ’

# ask ARI for the time
elif self.status == ’ask_help ’ and self.ari.speech.previous_speech_act == ’QUESTION:HELP’:

self.irene.speech.say(’Hello. Yes. What is the time?’, act=’QUESTION:TIME’)
self.status = ’ask_time ’

# after the question is asked , let ARI answer
elif self.status == ’ask_time ’ and self.irene.speech.previous_speech_act == ’QUESTION:TIME’:

self.ari.speech.say(’It is 14:30.’, act=’ANSWER:TIME’)
self.status = ’answer_time ’

# after ARI answered , thank it
elif self.status == ’answer_time ’ and self.ari.speech.previous_speech_act == ’ANSWER:TIME’:

self.irene.speech.say(’Thank you. Good bye.’, ’GOODBYE ’)
self.status = ’thank_ari ’

# finally , let ARI leave
elif self.status == ’thank_ari ’ and self.irene.speech.previous_speech_act == ’GOODBYE ’:

self.ari.speech.say(’Good Bye’, act=’GOODBYE ’)
self.ari.set_goal_position([1, 4.], -3 / 4 * np.pi)
self.status = ’leave’

# stop the simulation after ari left
elif self.status == ’leave ’ and mpi_sim.utils.measure_distance(self.ari , [1., 4.]) < 0.5:

simulation.stop()
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a) Initialization b) ARI joins the group

c) ARI starts a dialogue d) ARI answers a question

e) ARI ends the dialogue f) ARI leaves

Figure 3.10: Behavior of the GroupDiscussionScript where ARI (starts in the top) joins a group of two people (start
in the bottom). After joining the group (a, b), ARI asks if he can help (c) and then answers a question (d, e), before
leaving the group (f).
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4 Conversational Content Generator

4.1 Overview

The conversational content generator (CCG) is a user simulation tool to generate synthetic conversational content
data to simulate the utterances that the different agents produce in a social context. It is developed by HWU. Its
purpose is to provide a simulation framework for generating enough data so as to be able to test and train policies
for the SPRING Multi-party Conversational System (T5.3), for example with Reinforcement Learning [31], based on
the architectures presented in SPRING Deliverable D6.1 [28]; and the data generation framework, of the multi-party
interaction simulator in Section 3, regarding it’s conversational content, Section 3.3.3.

There has been a variety of prior work on user simulation for dialogue systems, as the use of user simulation
is seen as a critical tool for automatic dialogue management design [18]. The primary goal is to generate dialogue
behaviour realistic enough for training and testing a prototype system. These simulations have been used to train
dialogue managers using Reinforcement Learning. The CCG will simulate users’ behaviors in conversation. These
include, for example:

• Simulate user’s conversational goals (e.g. check in, then find the bathroom. )

• Simulate user’s utterances in response to utterances from other agents (e.g. robot or other humans) - for exam-
ple “Robot: How can I help you"; Human1: “I have an appointment at 10am"

• Simulate multiple users, for example a patient and their companion (Patient to companion: “Where do we need
to go now?", Companion to patient: “I don’t know")

The CCG is being developed as part of the T5.3 objective of developing the multi-party conversational system, for
training the natural language understanding (NLU), natural language generation (NLG), and the dialoguemanager (DM)
modules. The CCG for the SPRING project will develop approaches such as the Multi-User Simulation Environment
(MUSE) model of [6] using up-to-date tools and methods such as: [11, 12] 17, [20]18 and [8]19. There are many possible
interactions which need to be generated. Within the initial data collections ofWP1 some of these interaction examples
have been collected. Further, the design of the most recent data collection for multi-party conversations is reported
in SPRING Deliverable D5.2 [27], with which we are able to develop such simulations in the next phase of the project.
The code can be found in the SPRING repository and is open access to the public at least until 4 years after the project
ends:

https://gitlab.inria.fr/spring/wp5_spoken_conversations/conversational-user-bot-simulator

4.2 Dialogue Simulation Design

User Simulators are one of the major tools that enable offline training of dialogue systems, most of which has con-
sidered only a single user within task-based settings. The challenges for the SPRING project are to extend such ap-
proaches to multi-agent settings with different roles (patient, carer, doctor...) and more complex agendas consisting
of various different goals. For example a patient and carer may enter the waiting room together, the patient may ask
the carer where they should sit, and the robot (overhearing this) could decide to offer to help find a seat. Or the patient
could directly ask the robot questions such as where to find various locations or items (water, coffee etc) based on
their goals.

Learning dialogue policies directly from the collected data from WP1 would have the problem that the state space
that was visited during the collection of the data is limited, as using real users would require much more time and

17https://github.com/MiuLab/TC-Bot
18https://github.com/wyshi/user-simulator
19https://github.com/kimdanny/user-simulation-t5
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effort. In addition, every time we modified a dialogue strategy we would have to repeat all experiments with human
users from scratch, while a user simulation could allow an efficient and inexpensive way to test the performance of
different dialogue policies [3]. A realistic user simulator, built based upon a corpus of example dialogues (from our
data collection), can serve as an effective starting point to train the dialogue agents in an online fashion. Once agents
master the simulator, they may be deployed in a real environment, or in a virtual one that allows to connect with real
humans, like the slurk interaction server framework [4] – and continue to be trained online. This in turn will allow us
to collect more data to refine the user simulator and iterate over the dialogue policy training.

There is no one standard way to build a user simulator [11]. Furthermore, as the SPRING use case requires a multi-
task, multi-agent, multi-party setting, with different types of user roles that need to be simulated, there will not be a
singular user agent simulator, but as many and different user bots are needed to simulate, train and test the dialogue
policies for task T5.3. These user simulations will be developed inspired by previous research and state-of-the-art
developments for user simulation following [20] survey, and insights, of different ways to build user simulators at the
levels of DM, that governs the simulator’s next move, and NLG, that translates the semantic output from the DM into
natural language.

For NLG, the user simulator can operate either at the dialogue act level to select pre-defined templates, or retrieve
user utterances from previously collected dialogues, or at the utterance level, to generate the utterance directly with
a pre-trained language model. For the DM, a user simulator can adopt either an agenda-based approach or a model-
based approach. The Agenda-Based User Simulation (ABUS) [17] is a popular approach, where a user is modelled
as having a list of constraints or goals (the Agenda) which they wish to convey in a conversation (e.g. destination
= New York; depart-date= 12/4/22). User utterances can then be simulated via probability distributions over user
dialogue moves, given a prior system/robot dialogue move. On the other hand, data-driven neural user simulators
have demonstrated superior performance to the previous approaches. For instance [9] introduces the Neural User
Simulator (NUS) to learn realistic user behaviour from a corpus of recorded dialogues such that it can be used to
optimise the policy of the DM of a spoken dialogue system. [11, 12] combined the benefits of both model-based and
rule-based approaches following an agenda-based approach at the dialogue act level, and a sequence-to-sequence
natural language generation (NLG) component is used to convert the selected dialogue acts into natural language. [8]
propose a deep learning-based user simulator that predicts users’ satisfaction scores and actions while also jointly
generating users’ utterances in a multi-task manner. It fine-tunes a T5model [16] in a multi-task setting to make a user
simulator that predicts users’ satisfaction scores and actions, and generates users’ utterances.

4.3 Architecture

Similar to the MPISim (Sec. 3), the design philosophy for the CCG is to be modular and to be easily extensible. The
CCG will need to allow operation in 3 modes: as a conversational ‘content source’ for the SpeechGenerator Controller
within theMPISim (Sec. 3.3.3); and as a ‘stand-alone’ user simulator for directly training a dialogue system policy; as a
user ‘bot’ for testing a multi-party conversational system in an interactive setting with human users and other agents,
such as the slurk interaction server framework [4].

In consequence, the core features of the CCGwill follow a similar architecture to the one presented for theMPISim
(Sec. 3.2), as well as the frameworks provided by the user simulators of [11] and the slurk framework [4]. The CCG
system consists of three parts: agent and user simulator, and interaction script.

Simulation The simulation provides the top layer interface to the simulator, with a few common interfaces for agent
user simulators. It implements all the rules and mechanism to issue the next user action based on the last agent
action.

User (Agent) The user provides some common interfaces for the implementation of user bots (agents). All the
agentswill be derived from the agent class. Many different agents can exist, e.g. rule_based_agent, neural_agent,
t5_agent, developed to fulfil different roles at different stages of the development.

Interaction Task (Script) The interaction task script is used to describe and control the behavior of the simulation.
A task defines what an interaction looks and behaves like.
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5 Conclusions

The goal of SPRING task T6.2 is to provide a simulation environment allowing to train and test modules controlling
the non-verbal and verbal robot behavior. Three software modules have been developed for this task which support
this goal on different levels:

1. The 3D simulation of ARI for Gazebo provides a realistic physical model of the visual sensors and actuators of
the robot and their communication interface via ROS. It allows to evaluate visual sensor modules and low-level
behavior controllers.

2. The Multi-Party Interaction Simulation provides an abstract simulation of ARI, humans, and their physical in-
teraction. It allows to synthesize low-level behavior (for example, movement of humans) and perception (for
example, tracking of humans). Interaction scenarios can be scripted such as shown in Section 3.7 and used
to test, for example, if the navigation module of ARI is able to successfully join groups of humans. The simu-
lation is also used to train non-verbal behavior controllers. For example, a modified version of the simulation
was used to simulate the movement of human agents and to train a meta-reinforcement learning algorithm for
human-aware navigation [1] (Sec. 4.3).

3. The Conversational Content Generator generates synthetic conversational content simulating utterances that
agents produce in a social context. It allows to test and train policies for the multi-party conversational system.

All modules are designed to be modular and adaptable to changing requirements. They will be continuously updated
and improved upon throughout the project based on the demands for the training and testing of SPRINGs non-verbal
and verbal robot behavior modules.
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