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Executive Summary

Deliverable 3.5 reports on software packages incorporating the visual modality into the audio pipeline. We report on
two achievements: 1) an instantaneous direction-of-arrival (DOA) estimation for a single active speaker, incorporated
into the video tracker, and 2) voice generation from silent video.

Audio-only DOA estimation: We have already reported in D3.2 on both the visual and audio trackers (Task T3.1).
We will shortly deploy under ROS and evaluate the convolutional neural network (CNN)-based multiple-speaker audio
tracker [9]. In the meantime, relying on the accuracy of the visual tracker, we have implemented a simple audio-
based localizer. By doing so, we can relate the audio and visual identities of the speakers, thus facilitating speaker
diarisation.1

Voice generation from silent video: In the lip-to-speech task, we are given a soundless video of a person talking
and are required to accurately and precisely generate the missing speech. Such a task may occur, e.g., when the
speech signal is completely obfuscated due to background noises. This algorithm can serve for speaker extraction
of a desired speaker in adverse conditions. In the near future, we will leverage this visual information to, hopefully,
improve the separation and diarisation results that were reported in D3.3 and D3.4.2

1Code will be available at https://gitlab.inria.fr/spring/wp3_av_perception/audio_gcc_doa/-/tree/main?ref_type=heads
2Code will be available at https://gitlab.inria.fr/spring/wp3_av_perception/lipvoicer
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1 Introduction

This deliverable is part of WP3 of the H2020 SPRING project. The objective of WP3 is “the robust extraction, from the
raw auditory and visual data, of users’ low-level characteristics, namely: position, speaking status and speech signal.”
Following this objective, WP3 has two main outcomes:

1. The Multi-Person Tracking module, jointly exploiting auditory and visual raw data to detect, localise and track
multiple speakers (corresponds to T3.1).

2. The Diarisation and Separation and the Speech Recognition modules, extracting the desired speaker(s) from a
speech dynamic mixture and recognising the speech utterances from the separated sources, for a static T3.2
and a moving T3.3 robot.

In this context, the current deliverable D3.5 is complementary to D3.1, D3.2, D3.3, and D3.4. Here, we present two
software tools:

1. a simple audio localisation algorithm to match the visual localisation readings. Note that the full integration of
this tool is not yet accomplished, but all components are available.

2. an audio generation tool from a silent video that is capable of generating high-quality audio with a reasonably
low word error rate (WER). The tool can be used in acoustically adverse conditions and will be later extended to
a full-fledged audio-visual separation algorithm. This tool is not yet integrated under ROS.
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2 Audio-Visual Localisation and Tracking

In D3.1, a state-of-the-art multi-person visual tracker known as fair multi-objective tracking (FairMOT) [22] was intro-
duced. In D3.2, some of the original FairMOTmodels based on the residual neural network (ResNet34) [11] architecture
have been compared with newly trained models that are better adapted to the non-rectilinear perspective character-
istics of the fisheye camera. In D3.2 we reported on the integration of the visual tracker with a simple audio tracker
known as Open embeddeD Audition System (ODAS) [7], specifically implemented for robot audition tasks. In this
report, we will discuss a simple localization algorithm based on the GCC-PHAT. The audio tracking module will be
substituted in the near future with a CNN-based system developed by BIU [9].

2.1 Audio-Visual Fusion based on ODAS

ODAS implements a sound source localisation algorithm, which combines the classical steered response power with
phase transform (SRP-PHAT) method, enhanced by hierarchical search with directivity model and automatic calibra-
tion (HSDA), followed by a tracking algorithm supported by a Kalman filter. The package can be used out-of-the-box
for ARI’s microphone array. Nevertheless, it required some software development to share the hardware (specifically,
to be able to use the microphones simultaneously by other sound processing modules), and ROS integration. Tracked
sound sources are given by ODAS as unit vectors pointing to them (i.e. direction-only), in the microphone frame. Since
we do not actually know the distance of the sound source but only its direction, we have to set an arbitrary distance
(2 or 3 m, for example) in order to obtain an approximated 3D position of the sound source in the microphone frame.

2.2 Audio-Visual Fusion based on GCC-PHAT and VAD

The GCC-PHAT is a classical time difference of arrival (TDOA) estimator, based on the maximization of the cross-
correlation between the microphone signals. To alleviate the influence of the reverberation, the cross-spectrum be-
tween the microphone signals is first calculated. Then, the cross-spectrum is normalized by its absolute value to
obtain the corresponding phase. Finally, the normalized cross-spectrum is back-transformed to the time domain. The
peak of the resulting generalized cross-correlation (GCC) corresponds to the TDOA between the signals. We applied
parabolic interpolation to the GCC series to obtain a higher resolution peak-finding.

The ReSpeaker microphone array installation in ARI is perpendicular to the floor. We will therefore only use the
two upper microphones rather than the entire 4-microphone array (see Fig. 2.1a) and estimate the DOA in the azimuth
plane. The distance betweenmicrophones 1 and 2 is 45.7mm. In the near-field, the relation between the TDOA and the
DOA depends on the distance between the source and the microphone. We have therefore prepared a lookup table
with the proper correspondence for several distances andwill select the relevant table based on the depth information.
A significant drawback of the GCC-PHAT is its inability to produce meaningful results in the multiple-speaker case.
Although several cures to this problem are available in the literature, we decided to take a different path. In any
case, in the near future, we plan to substitute this module with the CNN-based algorithm [9], which can track multiple
concurrent speakers.

The audio-based DOA readings will be fused with the visual-based DOA readings to form a comprehensive audio-
visual id of the speakers that are engaged with ARI. Moreover, the single-microphone separation algorithm (see D3.4)
provides two separated soundtracks together with their activity patterns. These VAD signals and the DOA readingswill
be used to properly separate, diarise, and identify the speakers. Note that when the activities of the sources overlap,
they will be separated by the algorithm, but the DOA readings will be unreliable and therefore discarded.

Sample DOA estimates for a single-speakers scenario are depicted in Figs. 2.1b, 2.1c.1

1Animation of a source moving on a semi-circle of radius 1 m can be found in https://www.dropbox.com/s/ry2tn7ea85t5rof/gcc_phat_
lookuptable_3_pos.mp4?dl=0
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(a) Respeaker array. The distance be-
tween microphones 1 and 2 is 45.7 mm.

(b) DOA estimation for a source at −30◦,
1 m from ARI.

(c) DOA estimation for a source at 40◦, 1m
from ARI.

Figure 2.1: The ReSpeaker microphone array and sample DOA estimates.
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3 LipVoicer

Lip-to-speech involves generating a natural-sounding speech synchronized with a soundless video of a person talking.
Despite recent advances, current methods still cannot produce high-quality speech with high levels of intelligibility for
challenging and realistic datasets. In this work, we present LipVoicer, a novel method that generates high-quality
speech, even for in-the-wild and rich datasets, by incorporating the text modality. Given a silent video, we first predict
the spoken text using a pre-trained lip-reading network. We then condition a diffusion model on the video and use
the extracted text through a classifier-guidance mechanism where a pre-trained automatic speech recognition (ASR)
serves as the classifier. LipVoicer outperforms multiple lip-to-speech baselines on LRS2 and LRS3, which are in-
the-wild datasets with hundreds of unique speakers in their test set and an unrestricted vocabulary. Moreover, our
experiments show that the inclusion of the text modality plays amajor role in the intelligibility of the produced speech,
readily perceptible while listening, and is empirically reflected in the substantial reduction of the WER metric.

3.1 Introduction

In the lip-to-speech task, we are given a soundless video of a person talking and are required to accurately and pre-
cisely generate the missing speech. Such a task may occur, e.g., when the speech signal is completely obfuscated
due to background noises. This task poses a significant challenge as it requires the generated speech to satisfy multi-
ple criteria. This includes intelligibility, synchronization with lip motion, naturalness, and alignment with the speaker’s
characteristics such as age, gender, accent, and more. Another major hurdle for lip-to-speech techniques is the ambi-
guities inherent in lip motion, as several phonemes can be attributed to the same lip movement sequence. Resolving
these ambiguities requires the analysis of lip motion in a broader context within the video.

Generating speech from a silent video has seen significant progress in recent years, partly due to advancements
made in deep generative models. Specifically in applications such as text-to-speech and mel-spectogram-to-audio
(neural vocoder) [18, 14]. Despite these advancements, many lip-to-speech methods produce satisfying results only
when applied to datasets with a limited number of speakers, and constrained vocabularies, like GRID [4] and TCD-
TIMIT [10]. Therefore, speech generation for silent videos in-the-wild still lags behind. We found that these methods
struggle to reliably generate natural speech with a high degree of intelligibility on more challenging datasets like LRS2
[1] and LRS3 [2].

3.2 LipVoicer: Methodology

We introduce LipVoicer, a novel approach for producing high-quality speech for silent videos. The first and crucial part
of LipVoicer is leveraging a lip-readingmodel at inference time, for extracting the transcription of the speechwewish to
generate. Next, we train a diffusion model, conditioned on the video, to generate mel-spectrograms. This generation
process is guided by both the video and the predicted transcription, as illustrated in Fig. 3.1a. Consequently, our
model successfully intertwines the information conveyed by textual modality with the dynamics and characteristics
of the speaker, captured by the diffusion model. Incorporating the inferred text has an additional benefit, as it allows
LipVoicer to alleviate the lip motion ambiguity to a great extent. Finally, we use the DiffWave [18] neural vocoder to
generate the raw audio. A diagram of our approach is depicted in Fig. 3.1.

Previous methods often use text to guide the generation process at train time. We, however, utilize it at inference
time. The text, transcribed using a lip-reader, allows us to utilize guidance [6, 12] which ensures that the text of the
generated audio corresponds to the target text. Guidance, with or without a classifier, is an important part of diffusion
models and a key feature in recent advancements in text-to-image [20, 21] and text-to-speech [14, 13].
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Figure 3.1: An illustration of LipVoicer, a dual-stage framework for lip-to-speech. (a) To generate the speech from a
given silent video, a pre-trained lip-reader provides additional guidance by predicting the text from the video. An ASR
steers MelGen, which generates the mel-spectrogram, in the direction of the extracted text using classifier guidance,
such that the generated mel-spectrogram reflects the spoken text. (b) MelGen, our diffusion denoising model that
generatesmel-spectrograms conditioned on a face image and amouth region video extracted from the full-face video
using classifier-free guidance.
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3.3 LipVoicer: details

This section details the LipVoicer scheme for lip-to-speech generation. Given a silent talking-face video, LipVoicer
generates a mel-spectrogram that corresponds to a high likelihood underlying speech signal. The proposed method
comprises three main components:

1. A mel-spectrogram generator (MelGen) that learns to generate a mel-spectrogram image from the video.

2. A pre-trained lip-reading network that infers the most likely text from the silent video.

3. An ASR system that anchors the mel-spectrogram recovered by MelGen to the text predicted by the lip-reader.

At first, we train MelGen, a conditional denoising diffusion probabilistic models (DDPM) model trained to generate
a mel-spectrogram waveform conditioned on the video. Similar to diffusion-based frameworks in text-to-speech, e.g.
[13], we use a DiffWave [18] residual backbone for MelGen. When considering the representation for the video, we
wish it to encapsulate all the required information to generate the mel-spectrogram, i.e., the content (spoken words)
and dynamics (accent, intonation) of the underlying speech, the timing of each part of speech, as well as the identity
of the speaker, e.g. gender, age, etc. However, we wish to remove all irrelevant information to help train and remove
unnecessary computational costs. To this end, the video is pre-processed by creating a cropped mouth region video
and randomly choosing a single full-face image, corresponding to the content and dynamics and to the voice charac-
teristics, respectively. The mouth cropping was implemented according to the procedure in [19].

Next, a DDPM is trained to generate the mel-spectrogram with and without the conditioning on the video embed-
ding following the classifier-free mechanism [12]. In order to make MelGen robust to scenarios characterized by an
unconstrained vocabulary, we use the text modality as an additional source of guidance. In general, syllables uttered
in a silent talking-face video can be ambiguous, and may consequently lead to an incoherent reconstructed speech.
It can therefore be beneficial to harness recent advances in lip-reading and ground the generated mel-spectrogram to
the text predicted by a pretrained lip-reading network.

To circumvent the challenge of aligning text with video content, we employ text guidance by harnessing the classi-
fier guidance approach [6], similarly to [14], by using a powerful ASRmodel. Note that we use an audio ASR rather than
audio-video ASR, to encourage the model to focus on audio generation. Classifier guidance allows us to train MelGen
that is solely conditioned on the video and use a pre-trained ASR to guide that the generated speech is matched. As
a result, the ASR is responsible for the precise words in the estimated speech, and MelGen provides the voice char-
acteristics, synchronization between the video and the generated audio, and the continuity of the speech, see Fig. 3.1
for an illustration of our system.

One additional advantage of this approach is the modularity and ease of substituting both the lip-to-text and the
ASR modules. If one wishes to substitute these models with improved versions in the future, the process can be ac-
complished effortlessly without requiring any re-training. Finally, DiffWave [18] is used as the vocoder that transforms
the reconstructed mel-spectrogram to a time-domain speech signal.

3.4 Evaluation

We evaluate our LipVoicer model on the challenging LRS2 and LRS3 datasets. These datasets are “in-the-wild” videos,
with hundreds of unique speakers and with an open vocabulary. We show that our proposed design leads to the best
results on these datasets in both human evaluations as well as WER of an ASR system.

To the best of our knowledge, LipVoicer is the first method to use text inferred by lip-reading to enhance lip-to-
speech synthesis. The inclusion of the text modality in inference removes the uncertainty of deciphering which of
the possible candidate phonemes correspond to the lip motion. Additionally, it helps the diffusion model to focus on
creating naturally synced speech. The speech generated by LipVoicer is intelligible, well synchronized to the video,
and sounds natural. Finally, LipVoicer achieves state-of-the-art results for highly challenging in-the-wild datasets.

We evaluated ourmethodwithWERand synchronizationmetrics. For a fair comparison, we evaluate theWERusing
the ASR model from [8] that is distinct from the one we use for guidance. For synchronization, we use the pre-trained
SyncNet [3] model to evaluate the LSE-C and LSE-Dmetrics. As a result of the disparity in image shapes between LRS2
and the expected input shape SyncNet was trained on, we refrain from providing synchronization metrics for LRS2.
Despite our efforts to mitigate this challenge through image padding to align with SyncNet’s expected input shape,
this approach resulted in significant artifacts that adversely impacted SyncNet’s performance across all methods. For
SVTS, we report WER and synchronizationmetrics only for LRS3, since the authors did not open-source their code and
only released the generated test files for LRS3. From theWER scores, it is clear that our method significantly improves
over competing baselines. It is also clear that this improvement is solely due to the ASR guidance, as without it the
WER plunges from 24.1% to 84.9% on LRS3. In addition to generating high-quality content, LipVoicer demonstrates
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commendable synchronization scores, ensuring that the generated speech aligns seamlessly with the accompanying
video. Interestingly, the incorporation of text classifier guidance enhances the intelligibility performance while leading
to a slight degradation in the LSE-C synchronization metric. We postulate that this observation may occur in cases
where the predicted text is significantly different from the ground-truth text.

LRS2 LRS3

WER WER LSE-C ↑ LSE-D ↓

GROUND TRUTH 6.1% 2.5% 6.880 7.638

LIP2SPEECH [16] 58.2% 61.7% 5.231 8.832
SVTS [5] - 75.6% 6.018 8.290
VCA-GAN [15] 95.1% 87.5% 5.255 8.913

LIPVOICER W/O ASR (OURS) 81.2% 84.9% 6.318 8.310
LIPVOICER (OURS) 33.9% 24.1% 6.239 8.266

Table 3.1: Comparison of LRS2 & LRS3 word error rate (WER) and Lip-Speech Synchronization.

We also created a demo showcasing LipVoicer’s superiority in producing natural, synchronized, and intelligible
speech, providing additional evidence of its effectiveness.1

3.5 Conclusions

We presented LipVoicer, a novel method that shows promising results in generating high-quality speech from silent
videos. LipVoicer achieves this by utilizing text inferred from a lip-reading model to guide the generation of natural
audio. We train and test LipVoicer on multiple challenging datasets comprised of in-the-wild videos. We empirically
show that text guidance is crucial to create intelligible speech, as measured by the WER. Furthermore, we show
through human evaluation that LipVoicer faithfully recovers the ground truth speech and surpasses recent baselines
in intelligibility, naturalness, quality, and synchronization. The impressive achievements of LipVoicer in lip-to-speech
synthesis not only advance the current state-of-the-art but also paves the way for intriguing future research directions
in this domain.

1https://lipvoicer.github.io

D3.5: A Software Package for Audio Processing Assisted by Visual Information Page 11 of 14



This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 871245.

4 Discussion

This document reports the progress in joint audio-visual processing. We first discussed the audio tracker based on
GCC-PHAT [17] that adds the audio directional information to the already established visual directional information. To-
gether with the activity patterns of the sources provided by the speaker separationmodule, a full diarisation-separation
module can be implemented. In the near future, the simple GCC-PHAT algorithmwill be substituted with a CNN-based
algorithm [9]. A second module, reported in this document, is a lip-to-voice algorithm that generates an audio signal
from a silent video. This algorithm can serve as a speech enhancement module in extreme acoustic conditions, but
more importantly, it will serve as a platform for a joint audio-visual speaker separation.
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