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Executive Summary

This deliverable aims to develop models, representations, and learning algorithms for creating and updating a map of
the environment. This directly serves StO-1 and SpO-1.3. The outcome comprises the Visual Robot Localization mod-
ule, enabling robot self-localization through vision T2.1; the Visual Semantics module, facilitating language-driven
robot self-localization T2.3; and the Online Map Update module, tasked with updating the current environment map
with semantic information T2.4. In terms of Key Performance Indicators, the deliverable addresses and improves
the results reached concerning the KPI-StO-1.2 (Multiple object tracking accuracy) and KPI-StO-1.7 (Object recogni-
tion mean average precision) by Openscene3D segmentation of the environment. Further, the deliverable addresses
the updates reached in the scope of the KPI-StO-1.8 (Image retrieval precision and recall) by employing the seman-
tic information of the environment, KPI-StO-1.9 (Localization accuracy), and KPI-StO-1.10 (3D structure coverage by
the Visual/3D map) by using simultaneously forward and backward facing camera for the localization. The current
milestone reached aligns with MS5: Validation of the intermediate software architecture, completed in controlled
environments (laboratory) and initiated in relevant domains (hospital), as expected by the grant agreement. We will
continue finetuning and evaluating the frameworks to achieve MS6 and MS7, i.e., by systematically validating the
overall intermediate software architecture in relevant environments and quantifying usability and acceptance using
standard protocols.
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1 Contributions

1.1 Introduction

For assistive robots, it’s crucial that they are capable of understanding and discussing their environment. This is piv-
otal for task completion and facilitates appropriate responses and conversations that are contextually accurate and
consider both the ongoing dialogues and their location. The term ’Visual language grounding’ denotes the associ-
ation between linguistic expressions and their visual counterparts, such as objects, their characteristics, and their
interrelationships.

Creating a visually grounded dialogue for artificial systems presents several hurdles: 1) The task of correlating
language with visual perceptions is complex. Language is incredibly diverse, and the same expressions can hold
different meanings based on context or individual interpretation. 2) Language is fluid, with word meanings shifting
over time and new expressions being added. Agents working on a task can also dynamically form and negotiate
meanings. Given this, it’s impractical to encode all this knowledge in advance. 3) Once an artificial agent like a robot
can comprehend language and relate it to the visual world, another challenge arises. How does it generate responses?
How does it appropriately formulate pertinent and coherent answers given a particular scene, prior dialogue, and
question?

The answer partially lies in the robot’s ability to dynamically learn about new unknown objects, their properties,
affordances, and relationships. As the robot navigates through its environment, it continually encounters new objects
that are domain-specific and can be employed in the localization process. These continuously learned representations
of the environment and its specific properties can then be utilized as priors for finding similar images for localization.
This dynamic learning approach enables the robot to create a more enriched and context-specific understanding of
its environment and world meaning.

This document provides an overview of software modules developed for visually-based semantic scene compre-
hension, with evaluations performed on the Broca dataset. The Broca dataset comprises five recordings from the ARI
robot, collected in April 2022, which include images from the front and rear fisheye cameras. The dataset contains
2500 images (250 per recording, two cameras, and five recordings). It also includes two scans captured by the Mat-
terport scanner. Section 1.2 delves into multi-view semantic localization. It explains how the front and rear-facing
fish-eye cameras are used to improve localization and mapping. Section 1.3 focuses on how Large Language Models
(LLMs) can extract object relationships. This part highlights the results of the recent MiniGPT4 and LLaVAmodels on
input images from Broca. We discuss the strengths, weaknesses, and limitations of these techniques. Recognizing
unknown objects gets special attention, with more extensive details appearing in Section 1.4. This section discusses
multi-view open-set object classification and focuses on the evaluation of various anomaly scores. These scores help
us detect new environment-specific objects, which can be useful for pre-filteringmap images during localization. Sec-
tion 1.5 shifts the focus to Open-Set Object Classification in 3D. It presents the latest results in scene modeling, where
individual scene entities come equipped with queryable attributes, affordances, and classes using natural language.
Lastly, Section 1.6 discusses Localization Using Open-Set Object Classification. Here, we show how the outputs of
Section 1.5 come into play in localization. Specifically, how to use them for finding similar places in the map before
running localization based on matching local feature points.

The software will be made available through the code repositories. In accordance with European Commission
guidelines, the repository will be publicly accessible for a minimum of four years following the conclusion of the
SPRINGproject. Those interested can request software access by contacting the project coordinator atspring-coord@
inria.fr.
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Figure 1.1: The left part of the image visualizes the Hloc architecture as presented in [14]. The offline step of the algo-
rithm takes camera poses and images as input. The Hloc map creator detects local feature points using a selected
detector, triangulates them, and calculates a global descriptor for each image. At the time of localization, the query
image is processed by the same feature point detector and image descriptor. Based on the image descriptor, neigh-
boring images from the map are retrieved. Next, 2D-3D matches between the query image and selected images from
the map are utilized to run the absolute pose solver and localize the camera of the query image. On the right part, the
top scheme shows the map creation process. We assume two sets of images, i.e., the map and the test images, that
are used to create two reconstructions using Structure from Motion (SfM) [16]. One reconstruction consists of only
the map images, while the second includes all the images. The test images are further utilized to select sequences
from the recording. Each sequence uses the extrinsic camera calibration and Simultaneous Localization and Map-
ping (SLAM) [11] or SfM reconstructed relative poses plus the 2D-3D correspondences from the original Hloc inside
the generalized absolute pose solver. The generalized absolute pose solver finds the pose of the image sequence
in the map reconstruction (map coordinate system). Then, we compare the obtained poses with the poses from the
reconstruction where all the images are used.

1.2 Multiview semantic localization

The ARI robots used in SPRING are equipped with two 180 degrees field of view fish-eye cameras, providing a suitable
foundation for constructing global visual maps using global structure from motion pipelines such as COLMAP [16].
This led to the exploration ofHloc, an image-based localization pipeline, for global ARI localization in the relevant Broca
hospital environment [14, 15]. This section discusses shortly an extension by multiview localization. The relevant
codes for this section are in GitLab1. By using multiple images taken simultaneously or sequentially by the ARI robot,
particularly the front and rear-facing fish eye cameras, we gain a broader field of view of the surroundings, aiding
precise estimation of the camera pose. This approach bolsters accuracy and leverages a semantic understanding
of the environment but necessitates the generalization of the absolute pose estimation algorithm. The prefiltering of
candidate images in the map is discussed in sections 1.5, 1.6.

The process of measuring the accuracy of the localization consists of several steps. Initially, two sets of images -
the map and the test images - are utilized to create two distinct reconstructions using SfM [16]. The first reconstruc-
tion is solely based on the map images, whereas the second includes all images. Then, test images are employed
to select randomly short image sequences from the recording. Every sequence incorporates the extrinsic camera
calibration, relative poses reconstructed via SLAM or SfM, and the 2D-3D correspondences from the original Hloc.
This information is sent to the generalized absolute pose solver responsible for determining the pose of the image se-
quence within the map coordinate system. Lastly, the obtained poses are compared with the poses from the ground
truth reconstruction, which includes all images. This comparison is the best measure we can get without having
precise ground truth from external tracking system in Broca. It’s important to note that the timing of image capture
doesn’t significantly impact the process. Whether we use images taken at a single point in time or a sequence of
images captured over the last few seconds of recording (even when the robot is in motion) makes no considerable
difference to the outcome. The reason lies in the fact that our primary requirement is the relative poses and the 2D-3D
correspondences provided by SLAM and Hloc algorithms.

Drawing from statistical theory, the standard error - for instance, the error of the camera pose or the pose of the
image sequence - diminishes inversely with the square root of the number of observations. This implies that using
four images could double the accuracy of the results. Furthermore, it’s recognized that omnidirectional cameras tend
to have significantly smaller drift compared to their perspective counterparts. This is due to their ability to constrain
the camera pose from all directions, as opposed to only the forward direction visible in perspective images. However,

1https://gitlab.inria.fr/spring/wp2_mapping_localization/hloc-mapping-localization
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Figure 1.2: Visualization of the percentage of 209 localized queries within a given positional and rotational threshold.
The image sequences are from two different recordings of the ARI robot in Broca Hospital. The first recording forms
a map, and the second is used to compose the query sequences. Note that the front and rear-facing cameras were
not synchronized well, and therefore, the sequences were collected based on the spatial distance between cameras.
As a result, some camera poses may be less accurate because both cameras look in the same direction. Despite this,
the results confirm the theoretical assumption that the accuracy increases with the addition of more observations.

these benefits are subject to certain limitations. Regarding our evaluation, the precision of the SfM reconstruction
conducted with all the images truly influences the localization accuracy. Next, the accuracy of the relative poses
obtained from SLAM (which does use only the front camera now) over long sequences may exhibit considerable drift
that affects the camera rig’s pose.

1.2.1 Experimental evaluation

The experimental setup and evaluation procedure are described in Figure 1.1. We calculate the localization map, ex-
cluding the test images, and create a reference reconstruction using all the photos. Both are then aligned using the
Similarity transformation, i.e., the reference camera centers are aligned to the camera centers of map images. Subse-
quently, the test images are composed into sequences of different lengths [2, 4, 8, 16, 32], amounting to approximately
1k sequences in total, and localized with respect to the map. The residuals concerning the reference reconstruction
are visualized as a recall curve, as shown in Figure 1.2.

1.2.2 Conclusion

This section’s results address SpO-1.1, aiming to perform self-localization and tracking in cluttered and populated
spaces. The related KPI-StO-1.9, requiring a localization accuracy of less than 0.5 meters, is shown to be achieved.
Moreover, the increased accuracy of cameras within the environment further contributes to a more detailed 3D struc-
ture coverage. Consequently, these advancements directly contribute to reaching our target for KPI-StO-1.10, which
mandates a 3D structure coverage by the Visual/3D map of over 80%.
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Figure 1.3: Both LLaVA and MiniGPT-4 utilize the same visual instruction tuning process. Notable differences are
LLaVA’s use of the Contrastive Language-Image Pre-Training (CLIP) image encoder and MiniGPT-4’s use of BLiP-2,
along with differing tuning datasets.

1.3 Object relationships extraction by LLM

1.3.1 The Visual instruction tuning approach

Wehave conducted preliminary experimentationwith visually grounded large languagemodels, namelyMiniGPT-4 [19]
and LLaVA [7], in tasks related to visually grounded reasoning and dialogue, aiming to enhance human-robot interac-
tion within hospital locations. Effectively, this helps the robot understand a visual scene and facilitates meaningful,
contextual dialogue based on that understanding. Such capability is essential in healthcare environments, where pre-
cise comprehension of the scene and smooth communication can be crucial in assisting patients and medical staff.
The relevant codes are in GitLab repositories2,3.

The cornerstone of the approach utilized in the two vision-languagemodels [19], [7] lies in their innovative technique
for integrating the outputs of a Vision Transformer into the inputs of a Large Language Model (LLM). The Vision
Transformer serves as a pipe for transforming raw visual data into a structured, semantically rich format that the
LLM can comprehend and interpret. The visualization of these model architectures is in Figure 1.3. This integration
process, often called visual instruction tuning, bridges visual and language domains. Once the Vision Transformer
processes the visual data, the resulting output, a sequence of image patch embeddings, is projected directly into the
input space of the LLM. This effectively enables the LLM to perceive the visual information as if it is text, thereby using
its semantic and syntactic understanding capabilities to interpret the visual input.

An essential part of this approach is the fine-tuning process. By adjusting the LLM’s parameters based on vi-
sual instructions that correlate image properties with descriptions, the model learns better to understand the visual
data in the context of language. This synergy between the Vision Transformer and LLM facilitates learning complex
visual-language relationships and significantly enhances the model’s ability to provide accurate responses and make
insightful predictions. For our future research, we aim to explore this methodology’s potential in projecting 3D scene
models into the inputs of an LLM. The challenge lies in ensuring the transformed input adequately captures the spatial
and relational characteristics of the original 3D data. The visual instruction tuning approach presents a compelling
alternative to a scene graph-based technique. The advantages of this technique are multifold. Firstly, it can simulta-
neously process large amounts of visual and textual data. This allows the models to learn complex representations
across visual and language domains, often leading to a richer understanding of the scene and the ability to gener-

2https://gitlab.inria.fr/spring/wp2_mapping_localization/MiniGPT-4
3https://gitlab.inria.fr/spring/wp2_mapping_localization/LLaVA
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Evaluation results
Method Description Relation Usage
MiniGPT-4 0.58 0.1 0.2
MiniGPT-4 (cropped) - 4.5 0.7
LLaVA 0.64 0.35 0.55
LLaVA (cropped) - 0.7 0.7

Table 1.1: The table visualizes the mean score obtained by evaluating ten queries for each topic and each language
model. Note that the purpose of this visualization is to show the difference between the cropped images, which directly
focus on the object of interest, and the zoomed-out images, highlighting the limitations of current visual information
extraction from the LLM.

ate more accurate dialogue responses. Secondly, visual instruction tuning models inherently encode spatial relations,
eliminating the need for explicit graph-based representations, which, as seen in previous work, often suffer from noise,
misclassifications, and a tendency to highlight obvious or irrelevant relations. The limitation of such an approach is
the requirement of the finetuning dataset and hallucinations in out-of-the-domain environments.

1.3.2 Experimental evaluation

Evaluating this approach quantitatively is a non-trivial task. Current benchmarks focus predominantly on either object
detection or specific visual tasks and hence, need to be revised to evaluate the complex visual relationships these
models can capture. Therefore, we provide only a qualitative overview of this model’s ability to interpret and respond
to visual scenes.

We employed a three-pronged approach for qualitative evaluation. This methodology emphasizes questions from
three topics: object description, relationships between objects, and usage of the things. The results are shown in
Table 1.1. For the description category, the model is tasked with articulating an exhaustive and precise image descrip-
tion. Scoring for this task is based on a scale from 0 to 1. The answer with hallucinations (information not present
in the image) and overlooked or mistaken details are marked by zero. On the opposite side, accurate and precise
descriptions are evaluated as one. The relation category requires the model to discern and interpret relationships
between the image’s components. Questions in this category can include comparative reasoning between objects or
referencing an object via its association with others. Similarly, the usage category questions the model’s understand-
ing of objects’ functions and use cases within the image context. In the last two categories, scores range from 1 for
a correct answer, 0.5 for an incomplete or inaccurate response, and 0 for a wrong answer. The evaluation is done by
humans, which see the question, image, and model answer.

Taking into account the known limitations of the vision transformer architecture when dealing with objects that oc-
cupy a small portion of the image, we also conducted a supplementary evaluation. In these cases, the same questions
for relation and usage tasks were posed using images cropped to focus solely on the relevant part of the image. Ten
images were evaluated for each category to ensure a varied and balanced representation of different types of visual
data. It’s worth noting that while this evaluation provides valuable insights, it remains a manual and thus a somewhat
subjective measure of the model’s capabilities.

1.3.3 Limitations

While the approach exhibits outstanding potential, the vision-languagemodels, as noted in the referencedpapers [19], [7],
have shown a propensity to hallucinate significant visual details. This refers to their tendency to generate output
based on assumptions or learned patterns that do not strictly adhere to the actual content of the visual input, which
could notably impair themodels’ usability in real-world applications. This issue is particularly problematic in scenarios
where precision and accurate representation of visual details are paramount. Another hurdle relates to the substantial
computational cost associated with LLM inference. The complexity of large language models demands considerable
computational resources and power, which could present a significant constraint, especially in applications requiring
real-time or near-real-time responses.

Navigation by LLMs

In an effort to probe the utility of these vision-language models in a more diverse set of applications, we have con-
ducted experiments to test their proficiency in navigation tasks based on top-down views of an environment. Unfor-
tunately, the performance in this particular use-case was largely limited. The models showed difficulties in correctly
interpreting spatial relationships and movement directives from this perspective, making their outputs inadequate

D2.7: Learning scene representations in relevant environments Page 9 of 23
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Figure 1.4: Examples of description, relation, and usage task outputs with varying scores. The figures show examples
of good and bad scores, the effect of cropping images, and the impact of the input image dimensions.

for reliable, real-world application in navigation tasks. Consequently, while the models demonstrate strong potential
in certain areas of scene understanding and visual dialogue, their use in navigation-based tasks, at least under the
present state, is not sufficiently robust to be viable.

Open-set classifier by LLMs

We have also explored the possibility of leveraging these vision-language models as open set classifiers, through an
approach commonly referred to as prompt engineering. This methodology involves carefully crafting textual inputs,
or prompts, in order to guide themodel towards generating specific, class-related outputs. Despite our diligent efforts
in creating these prompts, the results yielded were varied and less than ideal. A prominent issue encountered was
the tendency of the models to "hallucinate," or infer elements and details not present in the input data. This could
result in unpredictable and often inconsistent textual output. This effect was particularly noticeable when adjusting
the temperature parameter of themodels. Typically, a higher temperature encouragesmore diverse output, potentially
increasing the model’s ability to cover a wide range of classes. However, in this instance, increasing the temperature
resulted in a significant degradation of the output’s consistency and reliability. The issue of hallucination and erratic
output became substantially more pronounced, further hindering the utility of these models in an open set classifica-
tion context.

1.3.4 Conclusion

The extraction of object relationships by LLM focuses on enhancing 3D geometric maps with semantic information.
This information is learned from associations between images (color and depth) and natural language queries, ad-
dressing SpO-1.3. The related KPI-StO-1.7, concerning object recognition mean average precision, is achieved through
the use of LLM, trained on a vast amount of internet data. Despite the challenging nature of evaluation, due to themul-
titude of ways the same intention can be expressed, a qualitative study demonstrates a high level of scene relationship
understanding as so as the limits of the usage for open-set classifier and the robot or patient navigation.
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1.4 Multiview open-set object classification

This section briefly updates object detection and classification from multiple views. This object detection is utilized
to distinguish between known and unknown objects in the scene to guide the localization and human interaction to
enrich the knowledge about the environment. The most specific objects and landmarks are the most valuable priors
for semantic localization. Suppose an example of localization in a room with a magnetic resonance machine within
the map of a hospital. By learning the unknow magnetic resonance, that was not included in standard datasets, we
can localize only from a few images that contain it, i.e., prune the map before the localization by Hloc.

In Computer Vision, there are many extensive studies on both closed-set problems and open-set problems (OSR).
Usually, they utilize a single view of the object to make a prediction. Most large modern datasets such as ImageNet
[13] are single-view because it is much harder to construct a dataset with high variability of objects, where each object
is captured from multiple views. Under the "view," we understand the image of the object captured from the specific
position of the camera. While making a decision where only one view is available is a crucial problem for many
applications, multiview settings might be beneficial for many problems. There are works such as [17] showing that
the use of multiple views of the same object leads to a better closed-set performance of the classifier, especially for
problems with large inter-class visual similarity and low intra-class similarity. Our work shows that utilizing multiple
views is also beneficial for Open Set Recognition. Information from different views helps to better understandwhether
the object is from the novel unseen class. Previouswork showed that the Vision Transformer [18][4] outperforms other
architectures in OSR tasks. We use ViT to extract features from images and use them to compute anomaly score,
which is used for known/unknown classification. The relevant codes for this section are in GitLab repository 4.

1.4.1 Anomaly score

In this section, we introduce simple methods to compute the anomaly score a, which is used to decide whether the
object is known or unknown. An anomaly score is computed from the outputs of a Neural Network trained in a closed-
set setting. We use the following variables: s - average softmax vector over N views, l - average logit vector over N
views, the output of the last layer before applying softmax, qi - average output of the penultimate fully connected layer
for ith view. In our case, the dimension of s and l is ten which is the number of known classes. And the dimension
of q is 768. For the first two methods, we consider an object as unknown if a < θ. For the other two, we say that the
object is unknown if a > θ, where θ is some threshold.

Maximum Softmax Probability (MSP) is often used as a baseline in Open Set Recognition problems. If the confidence
of the strongest class is too low, we say that this object is unknown.

aMSP = max(s)

Maximum Logit Score (MLS). The authors of [18] propose to use the MLS instead of the softmax probabilities as an
open-set indicator. Logits are outputs of the last layer in the network before softmax is applied, which normalizes
them. In [2], it was noticed that the logits of unknown instances have a lower magnitude.

aMLS = max(l)

Average cluster center distance (CCD). As pointed out in [9], unknown objects tend to be farther away in the feature
space from the center of clusters consisting of knownobject’s features. Here, we compute an average vector produced
by the penultimate layer of the trained network on the training data and call it ci for the ith class. We compute an
average cluster center distance (CCD) to measure novelty.

aCCD =
1

N

N∑
i

||qi − cŷ|| where ŷ = argmax(s)

Entropy. Another way to reject unknown objects is to measure the epistemic uncertainty of the detector. Instead of
using the maximal probability, we can use the full softmax vector with all class probabilities. In [8] s is treated as an
average vector of class probabilities over a set of score vectors produced by multiple forward passes of the same
data with enabled dropout. In other words, it is the average result of the model ensemble. In our case, s represents
the mean score vector on multiple views of the same 3D object. Therefore, uncertainty may arise when the model is
not able to classify the same object from different perspectives identically. To measure uncertainty, we can use the
entropy of the probability vector:

4https://gitlab.inria.fr/spring/wp2_mapping_localization/multiview-osr
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ae = H(s) = −
C∑
i=0

si ∗ log(si)

where C is the number of known classes. If s has a uniform distribution, the entropy will be large, so the uncertainty
is high. If the class probability is concentrated in one class, the entropy will be low, which means that the confidence
of the classifier is high.

SVD entropy. Another way to measure the uncertainty which exploits the consistency between feature vectors ob-
tained from different views is computing an SVD (or matrix) entropy. SVD entropy can be viewed as an indicator of the
number of eigenvectors that are needed for an adequate explanation of the data set. In other words, it measures the
dimensionality of the data. In our case, if the vectors corresponding to different views of the object differ too much,
SVD will produce many non-zero singular values, resulting in higher entropy. The SVD entropy is defined as:

aSV D = H(Y ) = −
M∑
i=1

σi ∗ log(σi)

where M is the number of singular values of the embedded matrix Y and σ1,σ2,...,σM are the normalized singular
values of Y . Y is the matrix that contains feature vectors obtained from different views.

GMMscore Insteadof using single cluster center to represent the classwecanuseGaussianMixtureModels (GMM) [10]
We obtain a measure of epistemic uncertainty for each known class by computing the log-likelihood of the data l for
every known class model Gi

aGMM = P = (log(p(l;G1)), ..., log(p(l;N )))

A low log-likelihood represents a high uncertainty the detected object belongs to the respective known class. To
identify and reject potential open-set detections, we can choose a minimum log-likelihood threshold θOSE and reject
detections that do not meet this threshold for at least one known class.

1.4.2 Experiments

In this section, we describe the conducted experiments and discuss the obtained results. The authors of [18] showed
that there is a roughly linear relationship between the top-1 accuracy used for the closed-set performance evaluation
and the Area Under the Receiver Operating Characteristic (AUROC) used for the open-set performance evaluation.
This is why we use the most prominent architecture for image classification, which is Vision Transformer (ViT) [3],
respectively, its ViT-B/16 variant. We take the pre-trained model on ImageNet and train it on selected classes from
the TinyImagenet for ten epochs, with input size 128x128. TinyImageNet is a subset of ImageNet [13], which has 200
classes and 500 images per class. Usually, it is considered the most challenging case for open-set recognition due
to the large number of classes and their complexity.

To evaluate the multiview performance of the proposedmodel, we use A Large-Scale Hierarchical Multi-View RGB-
D Object Dataset [6]. It contains 300 objects common in office and home environments organized into 51 categories.
There are 3-10 distinct object instanceswithin each category. Each object is spinning on a turntable at constant speed.
Three cameras mounted at three different angles relative to the turntable (approximately 30◦, 45◦ and 60◦) record a
video sequence at 20 Hz, which results in around 250 RGB-D images per camera and around 250,000 RGB-D images
in total. In our work, we use only RGB data, and depth images are ignored.

The number of common classes between the two above-mentioned datasets is very low. We choose ten classes
(keyboard, water bottle, flashlight, pitcher, plate, bell pepper, orange, lemon, banana, coffee mug) that have one-to-one
correspondence and consider them as known. We train ViT only on TinyImageNet images from 10 selected classes,
the other 190 classes are not used. Objects from 41 classes in the RGB-D object data set are labeled unknown.

To measure closed-set performance, we use the top-1 accuracy. For open-set, we use Area Under the Receiver
Operating Characteristic Curve (AUROC).

In the next sections, we will show how multiple views affect the closed-set and open-set performance of the clas-
sifier. We run the model multiple times using a different number of views. Each result is averaged over ten runs in
which random views are selected.

Feature embeddings visualisation

To make sure that our approach of measuring the distance to the center of the cluster in the feature space (CCD) is
valid, we visualise features of known and unknown objects in 2D (Figure 1.6). We plot 2D T-SNE latent representations
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Figure 1.5: Objects from the RGB-DObject Dataset [6]. Each object shown here belongs to a different category. Objects
are placed on a turntable which allows to capture them from different sides.

of 300 objects from the multiview dataset. As an input for 2D T-SNE, we provide outputs of the penultimate layer
(with dimension 768) averaged over five different views. We see that known objects form tight clusters and are close
to the cluster centers computed from the single-view training dataset. Interestingly, semantically similar objects like
"orange" and "lemon" or "pitcher" and "water bottle" are placed close to each other. Figure 1.6 demonstrates that
unknown objects are usually farther away from the cluster centers than known ones.

Figure 1.6: Left plot shows 2D T-SNE latent representations of cluster centers, known and unknown objects. The right
figure visualize classification accuracy for a different number of available object views. Each result is averaged over
ten runs where random views are selected.

Closed set performance

After training the classifier on ten classes from TinyImageNet with a validation accuracy of 95.7% we test it on the
multiview dataset. Figure 1.6 shows that the accuracy increases when multiple views are used for classification. Just
two additional views result in more than a 3% increase. However, more additional views do not affect performance
much. The maximum classification accuracy achieved on the test multiview dataset is 81.2% (15 and 20 views).
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Open Set performance

In a similar setting, we evaluate the open-set classification performance. Figure 1.7 shows that all methods benefit
from using multiple views. The greatest boost in performance is observed when only one view is added. Also, we can
observe that using more than 20 views is not very beneficial. We can see that using raw output (MLS) instead of soft-
max probabilities (MSP) results in a large increase in AUROC. CCD, MLS, and entropy methods perform very similarly.
However, using the SVD entropy of probability scores as an uncertainty measure shows the best performance. The
maximum AUROC achieved is 0.919 (50 views). GMM score shows the best performance on a low number of views
(1-3).

Figure 1.7: The left plot shows the AUROC for different numbers of views. CCD stands for Cluster Center Distance, MSP
for Maximum Softmax Probability, and MLS for Maximum Logit Score. These are evaluated on the dataset visualized
in Figure 1.5. The right plot shows the evaluation of the best performing anomaly score, i.e., SVD entropy (ViT-B trained
on 10 classes), on the Broca dataset. Bed, chair, clock and drinking fountain classes were not used during training.

1.4.3 Results

Table 1.2 shows that using multiple views is beneficial for both closed-set and open-set classification. Observing an
object from different angles provides reacher information about it. If the classifier response from different points
of view is similar, then the object can be considered as known. On the other hand, if the object looks different from
different sides and themodel outputs different predictions, then this object can be classified as unknown. From Table
1.2, we can draw an empirical conclusion that 20 views is the best choice in terms of accuracy and AUROC, but 5 views
seem to be optimal since the performance drop is not significant, but it is easier/faster to obtain them.

Metric/N views 1 2 3 5 10 15 20 25

Accuracy 0.768 0.791 0.808 0.811 0.795 0.812 0.812 0.803
AUROC 0.856 0.891 0.893 0.907 0.910 0.914 0.916 0.918

Table 1.2: Classification results on RGB-D Object Dataset (10 classes are known, 41 are unknown). For AUROC results,
the best open-set method (entropy) is used.

In our experiments, we demonstrated that combining features from multiple object views is beneficial for closed-
set tasks and open-set recognition. A few additional views of the same object can significantly enhance classification
performance. We integrated successful approaches from previous similar studies. We assessed multiple easy-to-
implement methods for computing anomaly scores and found that the SVD entropy performs the best. This method,
also known asmatrix entropy, aggregates features frommultiple views to determine whether an object belongs to the
unknown category. SVD entropy serves as an indicator of the number of eigenvectors needed to explain the dataset
adequately. As a result, objects with substantially distinct feature vectors from different views will exhibit higher SVD
entropy. This method has proven to outperform all the previously tested approaches.

Based on our findings, we further plan to fine-tune a model, which has been initially trained on a standard image
classification dataset, using a multiview environment-specific dataset. The data collection is under process, and the
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results of the retrained classifier will be reported in the final technical report. This process will encourage themodel to
produce consistent outputs for the same objects captured from different viewpoints. We expect this will improve the
model’s output consistency for known objects, while unknown objects will continue to have varying predicted labels
when captured from different perspectives.

1.4.4 Conclusion

This section concentrates on SpO-1.1: performing self-localization and tracking in cluttered and populated spaces,
as well as SpO-1.3: augmenting 3D geometric maps with semantic information learned from associations between
images andnatural languagequeries. TheKPI-StO-1.7, concerning object recognitionmean average precision, andKPI-
StO-1.8, regarding image retrieval precision and recall, are improved by distinguishing between known and unknown
objects. When an object is deemed unknown, we refrain from guessing its identity and instead generate a system
message to ask the user for clarification. Furthermore, new specific things serve as optimal guides for pre-filtering
images in the map used for localization, thereby addressing KPI-StO-1.9, which pertains to localization accuracy.
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Figure 1.8: The left part of the figure visualizes the main idea of the OpenScene3D paper, i.e., learning feature vectors
of 2D pixels and 3D points to achieve the same values by minimizing their cosine similarity loss. The right part of
the figure presents an overview of the algorithm. Feature vectors for each image pixel are extracted by pre-trained
segmentation models based on CLIP features [5]. Each 3D point has multiple projections into the images, and its
feature vector is constructed using an average pooling operator on top of these multi-view features. Another sparse
convolutional neural network is trained to produce feature vectors for each 3D point to be the same as those obtained
from fused pixel feature vectors. In this way, we achieve the same embedding for text queries, pixels in images, and
3D points. The similarity is further measured as the maximum from the cosine similarity between query-pixels and
query-points feature vectors. The visualizations are from OpenScene3D [12].

1.5 Open-set object classification in 3D

This section presents the application ofOpenScene3D [12], a recent novelmethod for 3D scene understanding, with the
Broca hospital environment. OpenScene is a groundbreaking approach that leverages text-image embedding models,
like CLIP, to offer open-vocabulary 3D scene comprehension. Unlike traditionalmodels that rely on labeled 3D datasets
for task-specific supervision, OpenScene uses a zero-shot approach to predict dense features for 3D scene points,
enabling task-agnostic training and open-ended queries. The unique aspect of OpenScene lies in its ability to compute
dense features for 3D points that are co-embedded with text strings and image pixels within the CLIP feature space.
By combining features extracted from both 2D images and 3D geometry, OpenScene is able to identify and understand
various aspects of 3D scenes, including objects, materials, affordances, activities, and room types, thus enabling a
wider range of 3D scene understanding queries.

Our contributions can be found in the GitLab repository5. These consist of methods for running this algorithm
in an environment that is actively being mapped by the ARI robot. The results of the experimental evaluation are
qualitatively visualized in 1.9, 1.11.

1.5.1 Experiments

We conduct qualitative testing of the Openscene3D scene representation on environment-specific reconstructions.
The testing methodologies we employ are as follows:

1. The scene is obtained by Structure from Motion utilizing images from the ARI dataset, and

2. A model obtained via a scanning process using a Matterport 3D camera.

SfM using ARI images

We reconstruct the 1st floor in the Broca hospital, with data captured with ARI’s front and rear fisheye cameras, using
a COLMAP [16] dense reconstruction pipeline.

The scene comprises a dining/waiting room, a hallway or corridor, and the main hall. We first achieve a sparse
SfM reconstruction, which estimates a sparse point cloud, along with the camera’s intrinsic and extrinsic parameters
(up to a similarity transformation). The estimated intrinsic parameters are then utilized to correct the distortion in the
fisheye images. These undistorted images are subsequently used for the dense reconstruction employing Multi-View
Stereo.

5https://gitlab.inria.fr/spring/wp2_mapping_localization/semantic-scene-represenation
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(a) Where are the fans? (b) I’m tired. Where can I lie down? (c) Where can I sit?

Figure 1.9: The Figure depicts a dense point cloud of a scene, accompanied by a related query and a highlighted
area. This area of colored points achieves significant cosine similarity of the feature vectors of the 3D points, pixels
in images, and extracted query feature vector. We calculated all the feature vectors by the OpenScene3D approach.

Figure 1.10: Dense reconstruction of the first floor of the Broca hospital. Snapshots of the same region in the Broca
hospital are presented, with the left image showing the results of Matterport 3D scanning and the right image display-
ing the SfM reconstruction from ARI images. The dense model derived from Matterport is complete and less noisy
than the reconstruction obtained from ARI images.

Matterport model

We also test the data acquired through manual scanning of the hospital using a Matterport 3D camera. This method
delivers higher quality 3Dmodels compared to the aforementioned approach of using SfMwith ARI images. Examples
of these models, in comparison with the SfM derived from ARI, are illustrated in Figure 1.10.

With the dense 3D representation of the scene, we can generate per-point CLIP-aligned features, achieving a se-
mantic representation of the scene.

Extracting OpenScene Feature Vectors and Class Predictions

We extract the semantic feature vectors of each point within the scene. These vectors are utilized to identify regions
in the scene that correspond to semantic queries. An illustration of this is provided in Figure 1.9

The process of extracting the semantic feature vectors for each 3D point in the Broca scene unfolds as follows:
• Data is pre-processed to include the images, corresponding depth maps, and the dense scene model in the .ply
format.
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(a) Output segmentation from Matterport model.

(b) Output segmentation from the COLMAP model

Figure 1.11: Segmentation output for the query: "Where can I sit?" The points in red are those with a value higher than
a threshold for the query. For the Matterport model, we can see that the chairs are detected, along with some parts
of the floor. However, there are false positives on the ceiling and some false negatives, in terms of missed chairs. For
the COLMAP model, the output segmentation is significantly poorer. Almost all the chairs are missed, and most of
the segmented points are on the ceiling or the walls.

• Using the dense model of Broca from the previous step, we extract the multi-view fused image feature for each
3D point with the OpenSeg [5] model.

• Inference is performed on the collected data using input prompts.
• For each 3D point, we obtain:

1. A 768-float semantic feature vector,
2. Scores for each input query prompt,
3. The class with the highest prediction score in instances of multiple prompts.

Semantic Queries: We test the following queries:

1. Where can I sit?

2. Where is the door?

The qualitative results are detailed in figures 1.11 and 1.12

1.5.2 Conclusion

Themethod proposed in [12] provides a robust semantic representation of the scene, integrating spatial understanding
with semantics, thus enabling natural language queries for objects within the map. This capability could prove highly
advantageous in hospital scenarios, such aswhen a patient needs to locate the nearest rest area or toilet. For instance,
if a patient prefers to wait in an area with a painting, as opposed to a television, or vice versa. The efficacy of this
approach is demonstrated with the demo data in Figure 1.9.

Limitations and Proposed Solutions This method does not perform as well with our data, whether the scene is
reconstructed from ARI images or a Matterport scan, even when evaluated qualitatively. Possible reasons include:

1. Density of 3D maps; the networks were trained on data considerably denser than either of the Broca models we
tested.
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(a) Output segmentation from Matterport model.

(b) Output segmentation from the COLMAP model

Figure 1.12: Segmentation output for the query: "Where is the door?" The points in red are those with a value higher
than the threshold for the query. For the Matterport model, we can see that the doors are detected. However, there are
false positives where it identifies windows as doors, along with a few points on the ceiling and other miscellaneous
points. The count of false negatives does not appear to be high. For the COLMAP model, the output segmentation is
significantly poorer. Almost all the doors are missing, and most segmented points are on the ceiling or the walls.

2. Noisy reconstructions, especially in the case of the SfM reconstructions from ARI.

A first step towards enhancing performance would involve distilling and training the network on our data, as op-
posed to using pre-trained model weights. This should significantly improve the query segmentation. Given the im-
practicality ofmanually scanning every scenewith a 3D scanner, it would be best to use the 3D reconstructions derived
from ARI images of the scene. One potential approach in this direction could involve leveraging different reconstruc-
tion pipelines such as RealityCapture or Meshroom, which might yield better results.

This section focuses on SpO-1.3: the augmentation of 3D geometric maps with semantic information acquired
through associations between images and natural language queries. Given the broad spectrum of environment-
specific classes we anticipate in a hospital setting, the KPI-StO-1.7 - (object recognition mean average precision) is
enhanced by employing CLIP features trained on a large dataset of internet images and their respective captions. As
a result, very few object classes remain unknown, enabling the robot to handle most discussions about them effec-
tively. The relationship with KPI-StO-1.8 (image retrieval precision and recall) and KPI-StO-1.9 (localization accuracy)
is discussed in the subsequent section.
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1.6 Localization using open-set object classification

Localization typically involves finding correspondences between feature points in map images and query images.
However, maps can contain tens of thousands to millions of images, making such searches time-consuming, poten-
tially taking tens of minutes. Thus, a common solution is to prefilter the images using a simpler and less accurate
approach, such as image retrieval. One standard method is training the weights of the descriptors of the points of
interest in the images, for instance, by utilizing NetVLAD [1]. This approach extracts a single feature vector for each
image, reducing the number of comparisons required to identify pictures with similar content.

This deliverable focus on scene representation for semantic localization, i.e., let us briefly discuss the proposed
localization on top of the OpenScene segmentation. We suggest utilizing the semantic classes, i.e., their names,
attributes, and affordances, that offer amore comprehensive understanding of the current environment than individual
feature points. Therefore, similar images can be prefilter by training the aggregation neural network weights for the
feature vectors extracted using the OpenScene3D approach. Moreover, the semantic classes of objects can also be
utilized to prefilter correspondences based on class membership. For example, we do not need to match the feature
points on a windowwith the feature points of a chair. We are going to evaluate this approach on standard and hospital
datasets.
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2 Conclusions

This deliverable, focused on enhancing 3D scene representation, represents a significant step toward achieving SpO-
1.1 objectives: performing self-localization and tracking in cluttered and populated spaces. Particularly, the results
presented are based on the application of these developments on the Broca dataset. The ability to accurately localize
is crucial for the effective functioning of assistive robots. We have demonstrated a multi-view localization approach
that can reach an accuracy of below 3cm using the last four images captured from a 2-second recording at Broca
Hospital at a frame rate of 2 fps. This accuracy achieves about an order better result than required by KPI-StO-1.9. Our
efforts also include integrating these localization codes into a Docker container, making the software ready to use on
the ARI robot.

Applying Large Language Models (LLMs) for language and image inputs is highly popular because it can extract
relevant information about the scene object properties. Recent models such as LLaVA and MiniGPT-4 have shown
promising qualitative results, while quantitatively, the outputs are appropriate in approximately 60-70% of examples.
Thesemodels provide amethod for extracting object descriptions, relationships, and usage, thus enriching the robot’s
environmental knowledge and enhancing human-robot conversation. While these models present several benefits,
they also have limitations, which are discussed in detail. The main one is the consistency of the answers across
multiple similar queries and hallucinations when the objects are far from the camera or out of the training dataset.
The presented experimental evaluation of LLMs addresses SpO-1.3 and the related KPI-StO-1.7.

To enhance localization speed, we investigated using semantic information to pre-filter candidate images in the
image retrieval task, i.e., the KPI-StO-1.8 (image retrieval precision and recall). Moreover, the anomaly cores are em-
ployed to identify rare but significant semantic classes not typically present in segmentation datasets. Such objects
can be used to filter out irrelevant map images during the online localization process. The best-performing anomaly
score was tested on a small Broca dataset composed of pictures of objects recorded by the ARI robot.

The OpenScene segmentation approach is evaluated in both standard and hospital environments. Properly trained
networks could select objects based on user questions such as "Where can I sit?" and "I’m tired. Where can I lie down?".
This directly serves StO-1 and SpO-1.3 and addresses KPI-StO-1.2 (Multiple object tracking accuracy) and KPI-StO-1.7
(Object recognitionmean average precision) as so as KPI-StO-1.8 (Image retrieval precision and recall) and KPI-StO-1.9
(Localization accuracy). This capability significantly enhances the natural discussions between the robot and human
users and can improve the speed of localization and image retrieval, as proposed in the last section. However, a
fundamental limitation is that the model requires retraining when moving from high-quality 3D environmental scans
to sparse and quasi-dense 3D scenes. This limitation emphasizes the challenge of generalizing this approach to
out-of-domain data sources.

As we move forward, we will continue to refine our models and techniques to overcome current limitations and
enhance the capabilities of assistive robots. In keepingwith EuropeanCommission guidelines, the software developed
in the course of this project will be made available via the GitLab code repositories and will remain publicly accessible
for a minimum of four years following the conclusion of the SPRING project. This ensures that our contributions can
be leveraged by the broader research and development community.
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