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Research Goal: Develop highly capable and intelligent mobile robots that are
robustly deployable in the real world with minimal human supervision

Field
Robotics

Machine
Learning

Motion
Planning



Disaster Robotics R (:) b (:}'I' | X

Modular Snake (Mexico City Earthquake) EMILY (Greece Refugee Crisis)

- UAV-USV Team

[Xiao et al., - Overhead Cameras [Xiao et al., IROS17, Visual Pose Stabilization
ICRA15] - Locomotive Reduction Dufek, Xiao, Murphy, Visual Navieation
SSRR17] Isual Mavigatl

PackBot (Fukushima Daiichi)

[Dufek, Xiao, Murphy, THMS21,
Xiao et al., RA-L20,
Xiao et al., FSR19

Xiao et al., SSRR19a, - Viewpoint Theory
Xiao et al., SSRR19b, - Risk-Awareness
Xiao et al., IROS18, _ .

Xiao et al., SSRR18 Tethered Flight
(Best Paper Finalist),

Xiao et al., SSRR17]
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Off-Road Mobility

i [
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High Speed Vertically Challenging Terrain
[XX et al., RA-L21, [D, B N, XX, ICRA24,
K, S, A R XXetal., IROS22] D, P. XX, under review]



Mobility in Highly-
Constrained
Environments
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The BARN Challenge and Datasets

ICRA 2022
Philadelphia

= [XXetal. RAM22] MEDIUM

ICRA 2023

London
[XX et al. RAM23] DynaBARN [N, J, H, X, L, XX, S, SSRR22]

Benchmark Autonomous Robot Navigation (BARN)
[P, T, XX, S. SSRR20]

World: 5 World: 57 World: \109 World: 193 World: 244 World: 285

~ A - <

Difficulty: Difficulty: Difficulty: Difficulty: Difficulty: Difficulty:
2.366 s/m 2.691 s/m 2.924 s/m 3.386 s/m 3.915 s/m 4.544 s/m




Where are robots currently deployed?

Manufacture (Kuka)
Highly Controlled Workspace

Do not Learn

Logistics (Amazon)
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: Home (iRobot)
: Preprogrammed Single Task
: Do not Learn
i
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Entertainment (Intel)

Healthcare (Da Vinci)
Fully Piloted by Skilled Humans
Not Autonomous
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Where do we want robots to be deployed?
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[Times Square, New York] [George Mason University]



What has changed?

e Humans!




Human-Interactive Mobile Robots:
from Learning to Deployment

* Humans pose both challenges
and opportunities: Challenges

* Challenges: Diverse and uncertain
human-robot interactions in the
wild.
* Opportunities: A wealth of diverse
(non-expert) knowledge. ' Opportunities '

11



Human-Interactive Mobile Robots:
from Learning to Deployment

* This talk: Human-interactive
mobile robots that efficiently Challenges
learn from and harmoniously

deploy among humans:
* Adaptive Planner Parameter

Learning (APPL) to utilize the &
opportunities from easily available o
non-expert human interactions. Opportunities

» Datasets, protocols, principles,

guidelines, and learning methods
to address social robot navigation
challenges.

12



Adaptive Planner Parameter Learning (APPL)

Motivation:

Deploying an autonomous navigation system in a new environment is
not as straightforward as it may seem.

During an existing deployment, autonomous mobile robots will keep
repeating the same mistake until a roboticist reprogram the robot.

13



Adaptive Planner Parameter Learning (APPL)

Inspiration: (Non-expert) Humans can do this effortlessly.

14



Adaptive Planner Parameter Learning (APPL)

Central Question: Can we squeeze more robust performance out of our
existing navigation systems using limited human interaction and

learning?
8! |
| Learning? |
Goal
ge';%°4bgsg oA NavigationfStack Setup
rove pase P
= a
i ¥ nav_msgs/GetMa Map
il global_planner ~<—— global_costmap
‘ —‘ "I sensor topics
’ ssssss transformsJ wmessage 1 navie BI] I E Q S8nsor_msgs/Laserscan Sensors
aec D fsensor_msgs/PointCloud
--------
Odometry  —— nav. msgs/Odomet E— local_plan -<—— local_costmap
md_vel"§geometry_msgs/Twist
provided node
H optional provided node
baze froller ACtlonS platform specific node

ROS move base navigation stack



Adaptive Planner Parameter Learning from Demonstration
(APPLD) xx et al., RA-L20]

Proposed: Use behavioral cloning to “tune” any navigation stack.

max_vel_x: 0.5
tuning parameters min_vel_x: 0.1
9 max_vel_theta: 1.57
min_vel_theta: -1.57
1 vx_samples: 6
vtheta_samples: 20
sensor data motor commands  occdist_scale: 0.1

— pdist_scale: 0.75
r —1 G(x;0) u

gdist_scale: 1.0
Inflation_radius: 0.30

Behavioral Cloning: Learn parameters from a demonstration
using supervised learning.

0* = argming ) . 0(G(x;;0), u;)



Adaptive Planner Parameter Learning from Demonstration
(APPLD) xx et al., RA-L20]

Rough Procedure:
1. Collect demonstration.

a »D = {(z1,u1),..., (TN, uN)}

2. Use black-box optimization to solve for planner parameters.
G(;)

D—{ Ablack-box [—>0"




Adaptive Planner Parameter Learning from Demonstration
(APPLD) [xx et al., RA-L20]

Context Problem: Humans exhibit qualitatively different navigation
behaviors in qualitatively different environments.

change points

o----/
contg'x

(corridor)

18



Adaptive Planner Parameter Learning from Demonstration
(APPLD) xx et al., RA-L20]

APPLD Pipeline

1. Collect demonstration. m >D = (1, m), -, (TN, uN)}

2. Perform automatic demonstration segmentation. ... B A

- -
------------------------

G(-)
$
3. Use black-box optimization to find set of optimal parameters. Dj—f s>,

4. Use supervised learning to train a context predictor. T—q By —k

19



Adaptive Planner Parameter Learning from Demonstration

(APPLD) xx et al., RA-L20]

APPLD Deployment

amcl

’ sensor transforms

|I/tfn

[3(B,(x))]

Goal (9;2

"move_basiimple/goa '

X

tf/tfMessage

geometry_msgly/PoseStamged Navigalion Stack Setup
move_base . ) v
B ma
l Y nav_msgs/GetMa map_server Map

global_planner -<—— global_costmap

.. Black Box|

nav_msgs/Path recovery_behaviors J

(z;8)

Odometry | _ nav_m;gs/Od';)metry local_planner -<—— local_costmap

sensor_msgs/LaserScan || SenSOI‘S

sensor_msgs/PointCloud

"cmd_vel"§f geometry_msgs/Twist

| base cqntroller Actions

provided node
optional provided node
platform specific node



Adaptive Planner Parameter Learning from Demonstration
(APPLD) [xx et al., RA-L20]

Experiments
o ~

Environment: Challenging obstacle course

Human: An author (Xbox wireless controller)

21



Adaptive Planner Parameter Learning from Demonstration
(APPLD) xx et al., RA-L20]

Deployment

change points

o----f._ N\
context “~. 3\
(corridor)

Human Demonstration Behavior Cloning
Demonstration Segmentation

fo B
o

g Context
{T;Daﬂznf,n},\:] {T117-2:----.7-K—1} Predictor




Adaptive Planner Parameter Learning from Demonstration
(APPLD) [xx et al., RA-L20]

Different robot, navigation stack, and environment
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APPL Iin Navigation Language

|

| aepL |

ge';”%°!l;f’§é%—;‘€3§é%/&?ﬁ'; NavigationfStack Setup

ove_pase "/map"
l { WetMap g Map

global_planner <——global_costmap

amcl ‘]
[ - g / wopics =
sensor transforms [tf intern, sensor S
‘ tf/tfMessage nav_msg h e r S!nsor_msgs7Ea§er§can ensors
- aec O fsensor_msgs/PointCloud

ravaraYaeld

nav_msgs/Odometi

Odometry

local_planner <—— local_costmap

"cmd_vel"fgeometry_msgs/Twist

proyided nodg
wegreier | Actions e ity
ROS move base navigation stack



APPL In Learning Language

End-to-End Learning

D

State/ |Reward Action
X R A

Raw Actions:
(v, w)

-

[Gao et al., CoRL17, Pfeiffer et al., RA-L18, Faust
et al., ICRA18, Chiang et al., RA-L19]

Parameter Learning

State .
S Action
Parameters:
Reward Max Speed,
R Sampling Rate,

Inflation Radius, etc.

\

-

«—

<

Env.

N J

[XX et al., RA-L20, W, XX et al., ICRA21, W, XX et
al., RA-L21, X, D, N, XX et al., ICRA21]
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State
S

Action

Parameters:
Reward Max Speed,

R Sampling Rate,
Inflation Radius, etc.

APPL from Human Interactions xico et ar., RAS22]

Parameter Learning

Algorithm 1 ApPPL

_|_

A1

1:

2;

A

6:

// Training
Input: human interaction Z, space of possible parameters ©, and navigation

stack G.

m = LearnParameterPolicy(Z, 0, G).

// Deployment
Input: navigation stack (7, parameter policy .
fort=1:7T do

construct meta-state s; from x; and 6;_,.

0, = 7(s¢).

Navigate with Gy, ().

:|end for

26



Adaptive Planner Parameter Learning from

Demonstration (APPLD) xiao et at, ra-L20
APPLD imposes an internal structure to the general parameter policy.

Parameter Learning

Reward

R

Context Parameter
Predictor Library

27



Adaptive Planner Parameter Learning from
Interventions (APPLI) w, xxet a, icraz1;

Robots do not behave suboptimally everywhere: Intervention when necessary.

Parameter Learning

Reward

R

Library

N - /
9 AN g % / AN
\\ ."' :.'," 4-4)"-, 4 -
R y
NP v
"- "’-o’ ".4 y
o
y. 4 Default
—I- 2 s 2 Param.
Mo\ U S 4
\\ '
\




Adaptive Planner Parameter Learning from Evaluative
Feedback (APPLE) w, xxet ar, ra-c21]

Non-expert users may not be able to take control of the robot: Evaluative feedback.

Parameter Learning

Reward

R

Feedback Parameter
Predictor Library

29



Adaptive Planner Parameter Learning from Evaluative
Feedback (APPLE) w, xxet ar, ra-c21]

Non-expert users may not be able to take control of the robot: Evaluative feedback.

Parameter Learning

Reward

R

Policy Network




Adaptive Planner Parameter Learning from

Reinforcement (APPLR) i o, n, xxet al, icra21;
What about no humans at all? Reinforcement Learning.

Parameter Learning

Reward

R

Policy Network

31



Cycle-of-Learning from APPL pxxet ai, ras22j

Worl World: 109 World: 193 ‘World: 244 World: 285

APPLR
[X, D, N, XX et al., ICRA21]

APPLE
[W, XX et al., RA-L21]

APPLI
[W, XX et al., ICRA21]

32



Cycle-of-Learning ':rom APPL (Future Work)

Field ( APPLD |
_r APPLD

User 1 ‘ {APLP%] | q

Rob;‘\

Manufacture

/




Human-Interactive Mobile Robots:
from Learning to Deployment

* This talk: Human-interactive
mobile robots that efficiently Challenges
learn from and harmoniously

deploy among humans
* Adaptive Planner Parameter

Learning (APPL) to utilize the &
opportunities from easily available o
non-expert human interactions. Opportunities

» Datasets, protocols, principles,

guidelines, and learning methods
to address social robot navigation
challenges.

34



SCAND: A Large-Scale Dataset of Socially &%
Compliant Navigation Demonstration wuwemme

e 40km (8.7 hours) of real-world data (~0.5TB)
e 138 trajectories, 15 days

e Data collected on two robots: Jackal and Spot

* Indoor and outdoor environments @ UT Austin

* Four different human demonstrators

* Coarse labels of social interactions

35




MuSoHu: Multi-Modal Social Human
NaVigatiOn Dataset (N, N, P D, XX, IROS23]

* 100km, 20 hours, 300 trials, 13 humans, and counting!

| — Linear Velocity (m/s)| |— Angular Velocity (rad/s)| | —— Navigation Path|

1.0

0.5

0.0

-0.5

-1.0




A Protocol for Validating Social Navigation Policies [ L, xx et al, icRA22WS]

@B Frontal Approach o— Human
@ Intersection Wait = - -» Robot Frontal Approach
@ (ntersection Gesture 1 The robot moved to avoid me.
(] Narrow Doorway 2* | The robot obstructed my path.
@8 Blind Corner 3 The robot maintained a safe and comfortable distance
at all times.
4% The robot nearly collided with me.
5 It was clear what the robot wanted to do.
o Intersection Wait
6 The robot let me cross the intersection by maintaining
a safe and comfortable distance.
LW 7 The robot changed course to let me pass.
e 8 The robot paid attention to what I was doing.
& H {—' 9 The robot slowed down and stopped to let me pass.
B1 Intersection Gesture
7 10 | The robot maintained a safe and comfortable distance

};GZ at all times.

11 The robot slowed down and stopped.
’! 12 The robot followed my command.

— 13 I felt the robot paid attention to what I was doing.
B2 Narrow Doorway
. . . 14* | The robot got in my way.
Frontal Approach Intersection Wait Intersection Gesture Narrow Doorway Blind Corner 15 The robot moved to avoid me.
A A 16 | The robot made room for me to enter or exit.
O : f ‘\\ Q 17* | It was clear what the robot wanted to do.
* Human continues, no stop : e Blind Corner
: Human yields to robot s 18 The robot moved to avoid me.

— = ! 19 The robot stopped to let me pass.
: 20* | I had to move around the robot.

- 21* | The robot nearly collided with me head-on.

Stop and Wait

v Stop and Wait Stop and Wait

el
IFO1 IO 00[7 il
0

37
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Principles and Guidelines for Evaluating Social
Robot Navigation Algorithms (& ... xxet at, under review

* Anthony Francis, Claudia Perez-D'Arpino, Chengshu Li, Fei Xia,
Alexandre Alahi, Rachid Alami, Aniket Bera, Abhijat Biswas, Joydeep
Biswas, Rohan Chandra, Hao-Tien Lewis Chiang, Michael Everett,
Sehoon Ha, Justin Hart, Jonathan P. How, Haresh Karnan, Tsang-Wei
Edward Lee, Luis J. Manso, Reuth Mirksy, Soeren Pirk, Phani Teja
Singamaneni, Peter Stone, Ada V. Taylor, Peter Trautman, Nathan Tsoi,

Marynel Vazquez, Xuesu Xiao, Peng Xu, Naoki Yokoyama, Alexander
Toshev, and Roberto Martin-Martin



P1: Safety

Avoid damage to
humans, robots or
their environments.

~~-
-
-~

'P2: Comfort

Avoid causing
annoyance or

goals can be
understood.

'P3: Legibility

Behave so robot

\stress in humans.

4

P5: Social Norms |

Comply with social
norms for navigating

in shared space.

-
-
-

-
.

P6: Agent Understanding

Predict and accomodate the
behavior of other agents.

~
———————

-
---------

'P4: Politeness

other agents.

Y -

Be respectful and
considerate of

P7: Proactivity

Take the initiative
to resolve potential
deadlocks.

: Contextual
Appropriateness

Behave properly in
the current context.

4




P1: Safety

P2: Comfort

P3: Legibility

P4: Politeness

P5: Social Norms

P6: Agent Understanding

P7: Proactivity

P8: Contextual Appropriateness

R1: Preserve Safety
R2: Respect Human Participants
R3: Ensure Clear Scientific Objectives

Experiments

Principles Prmcnples

for and

iy Guidelines

S1: Use Standardized APIs

S2: Include Standard Metrics

S3: Provide Options for Behavior Authoring
S4: Support Common Morphologies

S5: Support Human Labeling

S6: Support Dataset Generation

S7: Support Benchmark Creation

S8: Support Detailed Pedestrians

S9: Extensibility

Guidelines

M1: Report Widely Used Metrics

M2: Validate First with Algorithmic Metrics
M3: Parameterize Metrics in Context

M4: Learned Metrics for Acceptance Tests
M5: Use Validated Human Surveys

M6: Seek and Eliminate Sources of Bias
M7: Analyze Experiments Iteratively

M8: Report Results in Depth

N1: Specify Research Context

N2: Define Intended Robot Task

N3: Define Intended Human Behavior
N4: Define Success Metrics

N5: Cover Common Scenarios

N6: Ensure Scenario Flexibility

N7: Evaluate Fitness for Purpose

N8: Use Scenario Cards

B1: Evaluate Social Behavior

B2: Include Quantitative Metrics

B3: Provide Baselines for Comparison
B4: Efficient, Repeatable and Scalable

B6: Validate Evaluation Instruments

D1: Make datasets as broad as possible
D2: Scope datasets based on resources
D3: Ensure each scenario is well-sampled
D4: Use robots if robot behavior is desired
D5: Use diverse robot platforms

D6: Record behavior generation commands
D7: Collect annotations systematically

D8: Consider privacy issues early

B5: Ground Human Evals in Human Data



Social Robot Navigation is ...

 More than Classical Navigation.  —>Performer-MPC! xxetai, cortzz
MPC with Real-Time Transformers.
* Geometric, Semantic, and More. —>Multi-Modal Perception! iz v, xx under review
RGB and Point Cloud for Decision Making.
* Really beyond what Classical —Targeted Learning! i ... xx icraza)

Navigation Systems Can Do? Learn only When Classical System Fails.



Performer-MPC: Socially Compliant Navigation
Behavior by Real-Time Transformers xxet at, corc2

Planning the most efficient, shortest length, minimal time plan?

==V —\

I itation
] ] v v Loss
\ﬁ s [ ! 0S| xper
I g
3, S| [S3] | ke {]) 3 =
Key (® MPC
:ﬁ‘i H " T it Embeds. Quadratization _

A
E

£ _J
~

B K / Eng(l:lle;:red Trajectories
Context Performer
(Occupancy Grid, etc.) K (Scalable Attention) / - [nference Robot




Performer-MPC: Socially Compliant Navigation
Behavior by Real-Time Transformers xxet at, corc2

RGN By MPC Explicit Policy Regular MPC Exp11c1t Policy

[e5 e

s T e s

Performer-MPC r q

Blind Corner Pedestrian Obstruction
Learning to anticipate Pedestrians Learning to respect comfort distance

43



Learning Social Robot Navigation with Multimodal
Pe rCG pt | O n [P. R, N, XX, under review]

@

- &
o

< MLP —>>

RGB Encoder 5 B8

F
Unimodal |
Perception g ;
Multimodal Perception :

| 1 ) i Image Module .

v v v g —> &

Social Robot Navigation Decision-Making System ] Fusion Module & MLP
v v g
o
7 Point Cloud Module =
Global Path \% ’ Navigation Action a
Global Planning “ 3‘3& - q
System o ] Local Planning System ‘

o]

el : > &

Point Cloud < MLP

Encoder N 5 I555.6)

[_4
Goal

A A
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Learning Social Robot Navigation with Multimodal
Pe rCe pt i O n [P R, N, XX, under review]

Global Planning

With traffic

0.20 A

0.15 A

0.10 A

0.05

move_base: 0.5
move_base(s): 0.48
Human-Aware: 0.52

CoHAN: 0.66

Street crossing and sidewalk

100 200

0.20 A

0.15 A

0.10 A

0.05 A

move_base: 0.61
move_base(s): 0.53
Human-Aware: 0.58
CoHAN: 0.63

100 200

Global Planner Test Loss vs Epochs

With and against traffic

0.20

0.15 A

0.10 A

0.05 +

move_base: 0.48
move_base(s): 0.43
Human-Aware: 0.48

CoHAN: 0.48

Large group with and against traffic

100 200

0.20

0.15 A

0.10 A

0.05 A

move_base: 0.59
move_base(s): 0.61
Human-Aware: 0.62
CoHAN: 0.56

100 200

—— Multimodal

Sidewalk with traffic

0.20 A

0.15 A

0.10 A

0.05 A

move_base: 0.67
move_base(s): 0.64
Human-Aware: 0.68
CoHAN: 0.66

100 200

Large crowd

0.20 - move_base: 0.44
move_base(s): 0.41
Human-Aware: 0.45

0.15 - CoHAN: 0.46

0.10 -

0.05 -
100 200

— Point Cloud —— RGB Image

Sidewalk against traffic

0.20 A

0.15 A

0.10 A

0.05 1

move_base: 0.63
move_base(s): 0.57
Human-Aware: 0.65
CoHAN: 0.66

Narrow hallway with and against traffic

100 200

0.20 A

0.15 A

0.10 A

0.05 A

move_base: 0.64
maqve base(s): 0.59

100 200

Local Planning

Local Planner Test Loss vs Epochs

b5 move_base: 0.51
: move_base(s): 0.57
Human-Aware: 0.53
0.4 CoHAN: 0.54
0.3
0.2
0.1
0 50 100 150 200 250
—— Point Cloud =~ —— Multimodal —— RGB Image

5.0
4.5
4.0

335

v 3.0

825

1.5
1.0

With one human subject

With two human subjects

Q1

5.0

4.5

}111

w
v3.0
o
g25
2.0

15

1.0

Q2* Q3 Q4 Q5
s Multmodal

Point Cloud

k)

Q1 Q2 Q3 Q4 Q5
mm move_base

Human Study
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Targeted Learning: A Hybrid Approach to
SOCia‘ RObOt NavigatiOﬂ (R, .., XX, ICRA24]

* |s social robot navigation really beyond what classical navigation
systems can do?

* Probably yes, that’s why we need to study social robot navigation,
despite decades of experiences in classical navigation.

* How are they really different?



Targeted Learning: A Hybrid Approach to
SOCia‘ RObOt NavigatiOﬂ (R, .., XX, ICRA24]

* Cutting across a Queue

=)

Robot Pose

Classical
Navigation

woc

Socially
Compliant
Human
Demonstration

A

~ 20m
[K, N, XX et al., RA-L22]
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Targeted Learning: A Hybrid Approach to

SOCia‘ RObOt NaVigation (R, .., XX, ICRA24]

 Narrow Sidewalk

<
<«

20m

v

woc

=)

Robot Pose

Classical
Navigation

Socially
Compliant
Human
Demonstration

48



Targeted Learning: A Hybrid Approach to
SOCia‘ RObOt NaVigation (R, .., XX, ICRA24]

* Waiting at a Congested Area

=)

Robot Pose

Classical
Navigation

woc

Socially
Compliant
Human
Demonstration

20m

[K N, XX et al., RA-L22]

49



Targeted Learning: A Hybrid Approach to
SOCia‘ RObOt NaVigation (R, .., XX, ICRA24]

* Let’s quantify the difference between classical navigation and socially
compliant human demonstration!

Classical Navigation Socially Compliant Human Demonstration

Hausdorff Distance ~ 1.0 Hausdorff Distance ~ 2.0 Hausdorff Distance ~ 3.0
50



Targeted Learning: A Hybrid Approach to
SOCia‘ RObOt NaVigation (R, .., XX, ICRA24]

 So how does such a difference look like across all SCAND scenarios?

In-Distribution Out-of-Distribution

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0

. 1.5 2.0 2.5 3.0
Hausdorff Distance(m) Hausdorff Distance(m)
| N Hybrid I move_base | BC N Human-Aware I move_base(s) M CoHAN

51



Targeted Learning: A Hybrid Approach to
SOCia‘ RObOt NavigatiOﬂ (R, .., XX, ICRA24]

* Targeted Learning

Classifier Trained on

; ; Labels based on a
1f (ExpectClassicalGood(s)) > uedorff Distance

return ClassicalNavigation (s) Threshold
else

return BehaviorCloning(s)

52



Targeted Learning: A Hybrid Approach to

Social Robot Navigation .

Targeted Learning: A Hybrid Approach to

Social Robot Navigation

Amir Hossain Raj!*  Zichao Hu** Haresh Karnan> Rohan Chandra®> Amirreza Payandeh!

Peter Stone>? Joydeep Biswas> Xuesu Xiao!

' /GEORGE
I“:ASON

The University of Texas at Austin

Jackal @ GMU & Spot @ UT Austin
2x Speed

B®TEXAS Sony Al

, XX, ICRA24]

Frontal Approach Intersection Narrow Doorway
4 4 4
Jackal 3 3 3
Score , 2 5
1 1 1
0 QI Q@2 &8 ¥ & 0 Ql Q2 Q3 Q4 0 Ql Q2 Q3 Q4
4 4 4
Spot 3 3 3
Score , 2 2
1 1 1
0 0 0
QA @ QB Q4 Qs Q. @ Qo Q. Q@ Q3 @ o
—— Classical —— Hybrid —— BC
Jackal Frontal Intersection Doorway
Classical 2.66 + 0.64 3.98 £0.10 4.08 = 0.38
Hybrid 4.04+039 4.06+020 3.89+0.36
BC 3.63 £ 0.40 2.49£0.11 2.84 £0.25
Spot Frontal Intersection Doorway
Classical 3.73 = 0.22 2.72 £0.17 3.294+0.19
Hybrid 3.70 £+ 0.26 3.48+0.15 3.824+0.14
BC 3.41 £0.19 3.13 £0.12 3.54 + 0.49
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Social Robot Navigation is ...

 More than Classical Navigation.  —>Performer-MPC! xxetai, cortzz
MPC with Real-Time Transformers.
* Geometric, Semantic, and More. —>Multi-Modal Perception! iz v, xx under review
RGB and Point Cloud for Decision Making.
* Really beyond what Classical —Targeted Learning! i ... xx icraza)

Navigation Systems Can Do? Learn only When Classical System Fails.

* Datasets, Protocols, Principles,
and Guidelines!



Human-Interactive Mobile Robots:
from Learning to Deployment

* This talk: Human-interactive
mobile robots that efficiently Challenges
learn from and harmoniously

deploy among humans
* Adaptive Planner Parameter

Learning (APPL) to utilize the &
opportunities from easily available o
non-expert human interactions. Opportunities

» Datasets, protocols, principles,

guidelines, and learning methods
to address social robot navigation
challenges.
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