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Cocktail party problem

Cocktail party problem may

involve a few tasks:
e e How many speakers and where are
Speakep"""fl (Localization and tracking)

Who speaks and when?
(Diarization)
Multi-speaker talking simultaneously

3 / (Speech separation)

Said What?

\Speaker . —— W, (Automatic speech recognition)
What is the environment?
Cocktail-party problem (Cherry 1953) or ball-room problem (Acousticscene recognition, event
(Helmholtz, 1863) detection, room acoustics, noise source

categorization)

“No machine has yet been constructed to do just that [solving
the cocktail party problem].” (Cherry, 1957) )
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Speech source separation problem & potential solutions —

Potential techniques for the speech separation problem

= Beamforming

« Blind source separation and independent component analysis

= Speech enhancement

= Sparse representation and matrix factorization

Computational auditory scene analysis (e.g. time-frequency masking)
= Learning based techniques
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Source separation with time-frequency masking
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Sparsity assumption ------ each TF point is dominated by one source signal. UNIVERSITY OF
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Speech separation with “ideal” TF masking
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Psychophysical tests show that the ideal binary mask results in dramatic speech intelligibility

improvements (Brungart et al.’06; Li & Loizou’08). Example from D.L. Wang, OSU, 2006. ,
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: : [
Adverse effect in speech source separation

(a) Magntude spectrum of source 1 (b) Magntude spectnnn of source 2
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Audio visual speech source separation

Audio-visual (AV)
coherence
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Visual stream

Perception

\ Audio stream /
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Audio-visual speech source separation
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Motivations and challenges

r

* The audio-domain SS algorithms degrade How can the visual modality be
in adverse conditions. used to assist audio-domain SS

algorithms in noisy and

* The visual stream contains ;8
reverberant conditions?

complementaryinformation to the
coherent audio stream.

Objective

\,
‘ Potential applications { }
o b / Key Challenges \
CCTV
* Reliable AV coherence
modelling
Surveillance

* Bimodal differences in size,
dimensionality and
sampling rates

* Incorporation of AV
coherence into audio-
domain SS methods

v Robot audition UNIVERSITY OF

SURREY
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Audio visual feature exaction and selection

e Visual feature extraction
* Internal lip Widthand Height
e 2-Dimensional

V(M) =[LW(m), LH(m)]'

e Audio feature extraction
 Mel-scale Frequency Cepstrum Coefficients (MFCCs)

* Block processing (synchronize witheachvideoframe)

e L-dimensional
a,(m) =[a,(m),..., ar, (M)

e Audio-visual space-----Feature Selection

Height [pixels]
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Audio visual coherence modelling using audio mixture models

D
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Frequency domain speech source separation with ICA
S,(may) =S, (m,@,)
éZ(m’a)l) =S,(M, w,)

§1(m,w2) =S,(m w,)
SAz (m, w,)=S,(M, ,)
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Audio-visual independent component analysis (1C R —
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Solving the permutation problem

A
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. . s
Demo for the solution to the permutation problem

Now we gat two source estimates Y1(f,t) -
and Y2(f,t). Suppose the blue curves 3
represents frequency components coming | |
from source 1, while the red curves are
from source 2. We find that Y1(f,t)
contains components from both source 1

UNIVERSITY OF

SURREY



Sparse representation based AV coherence _—
modelling with dictionary learning

4 Off-line training stage

Training AVDL Source
AV sequences estimates
.

Separation stage

[ T
Visual mask
generation

Y

Audio domain

BSS

TF maSking, Mandel et al. 2010.
UNIVERSITY OF

SURREY
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Dictionary learning

|

Sparse Coding
x | Fix D, find a sparse X.

l

Dictionary Update
Update D.

l

W. Dai, T. Xu, and W. Wang, "Simultaneous Codeword Optimisation (SimCQO) for Dictionary Update and
Learning", IEEE Transactionson Signal Processing,vol.60, no. 12, pp. 6340-6353,2012.
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AV dictionary learning

20

AV sequence The coding process relies on the

matching criterion, how well an atom

o fits the signal in the MP algorithm
AV dictionary

MP coding

The learning process uses two different
update methods, to accommodate
different bimodality sparsity constraints.

AV dictionary

Converge 4 )

Q. Liu, W. Wang, et al., “Source separation of convolutive and noisy mixtures using audio-visual UNIVERSITY OF

dictionarylearning and probabilistic time-frequency masking", [EEE Transactions on Signal Processing,
vol. 61, no. 22, pp. 5520-5535, 2013. SU&REY



An example of the AV atoms learned from visual speecH

@

Long Speech

0]

Sheerman-Chase et al.

LILIR Twotalk database
2011

n

Frequency {kHz)
R

Lip tracking,
Ong et al. 2008

The first AV atom
represents the
utterance “marine”
/m?ri:n/while the
second one
denotes the
utterance

Frequency (kHz)
BN (o2}

na

“port" /p°:t/.
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Improving audio mask with visual information

Ma.'v (‘771, LU) — M(L (77?, u})'}»(Mv (}771-,@’))

Audio mask Visual mask
Statistically generated by evaluating the IPD and ILD Mapping the observation to the learned AV
of each TF point. dictionary via the coding stage in AVDL.

The power-law transformation
M®(m, w) r(M?(m, w))

‘-

The power coefficients

are determined by a non-
: linear interpolation with
 r(0.50) = 1.0 , 3 pre-defined values

.
e, B
. T(1) = 0.3

iMa(m, w) e R iMU(m/wU’)
1, ifvﬁ“(m,w) > ) (m,w) )
MO (m,w) = Q ha(m, w) /9 (m, w), UNIVERSITY OF
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Audio-visual time frequency mask

Original Source 1 Original Source 2 Left-Ear Signal Right-Ear Signal
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- 404
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02

0.1

Demonstration of
TF mask fusionin
AVDL-BSS

Why do we choose
the power law
combination, instead
of, e.g., alinear
combination?
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Evaluations on audio-visual speech source separation

24

Signal-to—distortion-ratio (SDR) dB
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Demos

Mixture Ideal Mandel  AV-LIU AVDL-BSS Rivet AVMP-BSS

Q. Liu, W. Wang, et al., “Source separation of convolutive and noisy mixtures using audio-visual
dictionarylearning and probabilistic time-frequency masking", IEEE Transactions on Signal Processing,
vol. 61, no. 22, pp. 5520-5535,2013. UNIVERSITY OF

SURREY




[
Recent developments in speech separation and related tasks

Input Pipeline system End-to-End
Separation Multi-talker Multi-talker system
& Beamforming Diarization ASR
. Yu et al. 2017; Luo et al. 2018 Fujita et al. 2019 Hershey et al. 2010 Delcroix et al. 2019;
Slngle channel Isik et al. 2016; Wang et al. 2018 Medennikov et al. 2020 Qian et al. 2018; Gulati et al. 2020 Mao et al. 2020
audio Bahmaninezhad et al. 2019 Kanda et al. 2022b Zhang et al. 2020; Neumann et al. 2020; Lu et al. 2021;
Maiti et al. 2023; Seki et al. 2018; Sklyar et al. 2021;
Kanda et al. 2019, 2021h, 2022a
. Chen et al. 2018, 2019 Zheng et al. 2022b Subramanian et al. 2021, 2022 Raj et al. 2021;
Multi-channel Guetal. 2019 Horiguchi et al. 2023 Erdogan et al. 2016; Ochiai et al. 2017 Yu et al. 2022
audio Yu et al. 2022 Watanabe et al. 2020;
Shi et al. 2022; Masuyama et al. 2023
. Wu et al. 2019; Gu et al. 2020, 2022 Ding et al. 2020 Yu et al. 2020a,b Yoshioka et al. 2019;
MUItI ChannEI Gogate et al. 2020; Xu et al. 2021 Kang et al. 2020 Wu et al. 2021; Shao et al. 2022; Yu et al. 2021;
multi-modal Zhang et al. 2021; Li et al. 2021 Wang et al. 2022;

Acknowledgement to Y. Xu, Tencent US, for providing this table. “Multi-modal Multi-talker Speech
Recognition, Separation and Diarization, Everything Streaming All at Once”

~ UNIVERSITY OF
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Data challenges in (AV) speech separation

high-fidelity mic
sound card

high-definition camera

linear mic array
(2 mic)

https://chimechallenge.github.io/chime6/

https://mispchallenge.github.io/mispchallenge2022

AMI meeting M2MeT challenge -- AliMeeting
2nd COG-MHEAR Audio-Visual Speech Enhancement Challenge (AVSE)

CONSORTIUM

EEEEEw A machine learning challenge for next-generation hearing devices

2 [ i
' Get Started
; EEEEER

This s#e provades full doosmentation of the challenge datasets, baseline systers and rules for participation.

7
{

http://corpus.amiproject.org/ ' https://challenge.cogmhear.org/

https://www.alibabacloud.com/zh/m2met-alimeeting

MMCSG (Multi-Modal Conversations in Smart Glasses) dataset ~ UNIVERSITY OF
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Other recent developments in related field

AV speech separation

R. Gao and K. Grauman, “VISUALVOICE: Audio-Visual Speech Separation with Cross-Modal Consistency,” Proc. CVPR, 2021.
A. Nagrani, et al., “Seeing Voices and Hearing Faces: Cross-modal biometric matching,” in Proc. CVPR, 2018.

AV general sound separation

C. Gan, et al. “Music Gesture for Visual Sound Separation,” in Proc. CVPR, 2020.
E. Tzinis, S. Wisdom, T. Remez, and J.R. Hershey, “AudioScopeV2: Audio-Visual Attention Architectures for Calibrated Open-

Domain On-Screen Sound Separation", in Proc. ECCV, 2022.

Universal sound separation

|. Kavalerov, et al., “Universal Sound Separation,” in Proc. IEEE WASPAA, 2019.

Q. Kong et al., “Universal Source Separation with Weakly Labelled Data,” arXiv:2305.07447, 2023.
Text-prompted/language guided universal sound source separation

X. Liu, et al. “Separate What You Describe: Language-Queried Audio Source Separation,” in Proc. Interspeech 2022.
X. Liu, et al. “AudioSep : Separate Anything You Describe”, arXiv:2308.05037, 2023.

Language guided AV source separation

Dong, et al., “CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos,” in ICLR 2022.
R. Tan, et al., “Language-Guided Audio-Visual Source Separation via Trimodal Consistency,” in Proc. CVPR, 2023.
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Audio-visual multi-speaker localization/tracking

Aim: estimate the number of speakers and their positions from audio-visual data

UNIVERSITY OF
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Application examples

Speaker Identification

31

Monitoring
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Challenges of Multi-Speakers Tracking

1. Unreliable Measurements
a. miss-detection
b. occlusion
C. noise
d. clutters

2. Unknown and Varying Number of Speakers
a. born speaker
b. spawned speaker
c. dead speaker

3. Disordered Speakers

e~
To =

/IB
\
\
~ - $5

~ \
AY :I:]'

\
A
\l °
Te
I
T4 !
e

Object state space

X 25

x Z2 x 21
X 23

X Z
/ X 24

x Zs

Measurement space
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Tracking Modalities

33

i.e., color, contour, texture and
motion, scale-invariant feature
transform, neural network learned
features.

Benefit: Low measurement noise.
Drawback: Limited tracking area.

Visual Cues Audio Cues

Modality Fusion

With a single modality, the targets may not be detected. Multi-modality fusion provides an effective solution

to improve the tracking performance.

i.e., beamforming, super-resolution
spectral estimation and time delay
estimation.

Benefit: Easyto distinguish occluded
speakers and unlimited broad tracking area.
Drawback: High measurement noise.

UNIVERSITY OF

SURREY




Methods for Multi-Speaker Tracking

Three main methods for multi-target tracking:

Joint probabilistic data association
filter (JPDAF)

i.e. Kalman filter, Extended Kalman
Filter [T. E. Fortmann et al. 1983]

and particle filter [Khan et al. 2004].

Benefit: Easily implement.
Drawback: Speaker state is only
calculated by nearby
measurement.

34

Multiple hypothesis tracking (MHT)
i.e. Kalman-Consensus Filter [Olfati-
Saber et al. 2009] and particle filter
[Kim et al. 2006].

Benefit: Tracking unknown
number of speakers.

Drawback: Assume that speakers
are detected.

{ \
/ \
(\ 3 /)
\ /
A W 4
Random finite set (RFS)

i.e. PHD filter [R. Mahler et al. 2003]
and Bernoulli filter [R. Mahler et al.
2007].

Benefit: Tracking unknown number
of speakers and speakers can
disappear.

Drawback: High computational cost

UNIVERSITY OF

SURREY
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Steps of PHD filter

1. Predict particles

10

8 10
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Steps of PHD filter

1. Predict particles

-10

10

-10
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Steps of PHD filter

1. Predict particles

-10

10

-10

10
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Steps of PHD filter

1. Predictparticles

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resampleparticles

38
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Steps of PHD filter

1. Predictparticles

-10

IO OI ILED O 1
© QOO o
® aD © 80
o 00 O
O O
° o0 %R
O @O
o 0 O
o O
OOO OO
o L Q
OQO@C%
O QO O O
© 0 On 5&0
e
o
O

-10

8 10

~ UNIVERSITY OF

) SURREY




Steps of PHD filter

1. Predictparticles

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resampleparticles

40
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Steps of PHD filter

1. Predictparticles

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

41
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Steps of PHD filter

1. Predictparticles

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles

10

S°A

8 10
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Steps of PHD filter

1. Predictparticles

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles

10

-10

-10

g 10
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Steps of PHD filter

1. Predictparticles
2. Update particles

2.1 Calculate likelihood density
2.2 Update particle weights
3. Clusterparticles

4. Resample particles

y(m)

10

| |
2 8 10
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PHD filter

Gaussian mixture probability hypothesis
densityfilter

1. A closed form solution.

2. Without a clustering step.

1. Assume that the systemis non-linear
and non-Gaussian

45

Sequential Monte Carlo probability hypothesis -
density filter |

oo [

1. High accuracy for the non-linear and non-
Gaussian problem, such as speaker tracking.

oo I

1. Weight degeneracy problem.

2. Need a clustering step.

UNIVERSITY OF
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculatelikelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

V. Kilic, M. Barnard, W. Wang, A. Hilton, and J. Kittler, "Mean-Shift and Sparse Sampling Based SMC-PHD
Filtering for Audio Informed Visual Speaker Tracking”, IEEE Transactions on Multimedia, vol. 18, no. 10, October
= 2016.
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

47
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

48
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

49
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

50
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

51
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

52
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Steps of AV-SMC-PHD filter

1. Relocationstep

2. Update particles
2.1 Calculate likelihood density
2.2 Update particle weights

3. Clusterparticles
4. Resample particles

V. Kilic, M. Barnard, W. Wang, A. Hilton, and J. Kittler, "Mean-Shift and Sparse Sampling Based SMC-PHD
Filtering for Audio Informed Visual Speaker Tracking”, IEEE Transactions on Multimedia, vol. 18, no. 10, October
= 2016.
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Drawback of the SMC-PHD filter

1. Weight degeneracy (major issue)
2. Re-location step only with audio measurements (minor issue)
3. Update step only with visual measurements (minor)

Particle weight wj is updatedas |

|

i i {7
| ; l I)’ . l)l).khk("k) ;
I W = “PpDk T E =TT\ . 7 A.'k k=1 |
| reZ hk(:L)'F (ll 2
[ Habii

[ Drawback 3

Update step
Drawback 1

UNIVERSITY OF

SURREY



Weight Degeneracy and Particle Flow

55

Propagated particles

Relocation and prediction
step

Particles of the prior density

Particles of the prior density

Update step with particle
flow

EEHHEEE Particles of the posterior

m density by AV-ZPF-SMC-
PHD
Y. Liu, V. Kilic, J. Guan, and W. Wang, "Audio-visual particle flow SMC-PHD filtering for multi-speaker ~  UNIVERSITY OF
tracking"”, IEEE Transactions on Multimedia, vol. 22, no. 4, pp. 934-948, 2020 SU I%REY
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Steps of Particle flow

1. Selectparticles

2. Calculatethevarianceand
mean of particles

3. Calculate particle flow
Update particles

Update pseudo time
Repeat steps 2-5

o U B

»
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SURREY




Steps of Particle flow

1. Selectparticles

2. Calculatethevarianceand
mean of particles ‘
3. Calculate particle flow 3 2

Update particles N :
Update pseudo time

o U B

Repeat steps 2-5
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Steps of Particle flow

1. Selectparticles

2. Calculatethevarianceand

mean of particles
3. Calculate particle flow

. dm? . . .

? . k At ) )
Jea= T T + by,
where

. 1 . .
Al = _§P£(Hk) ()\Hkpk( o' +R) Hl?é

b, = (I +2XA}) [(I + ) AL) PU(HL)T R 2, + Apmj,]
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Steps of Particle flow

1. Selectparticles

2. Calculatethevarianceand
mean of particles

3. Calculate particle flow

4. Update particles

i _ i i i
Amyp_1 = [E DX+ vpwy

5. Update pseudotime
6. Repeatsteps2-5
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Steps of Particle flow

1. Selectparticles

2. Calculatethevarianceand
mean of particles

3. Calculate particle flow

4. Update particles

5. Update pseudotime

A€ [0, AN 24N, -+, NAAN
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Steps of Particle flow

1. Selectparticles

2. Calculatethevarianceand
mean of particles

3. Calculate particle flow

4. Update particles

5. Update pseudotime

A e [0,AN 20N, -+, NAAN]
6. Repeatsteps2-5

=

() posterior
* particles
‘slope
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Particle flow

_________________________________________________________________________________

Zero-diffusion particle flow: ' Non-zero diffusion particle flow:

Benefit

Easy for implementation. Likelihood density can be non-Gaussian.

Drawback

*

Prior and likelihood density are Gaussian. Sensitive to parameters

______________________________________________________________________________________________________________________________________________________________________

)posterior
* particles
slope
UNIVERSITY OF
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AV-PF-SMC-PHD filter

birth particles survival particles

Speaker states

Update step
. B |
. [ 1 = N
Candidate Speaker States N m
’ Particle s;tate and weight are updated in the pseudo time A, \ & [0,0.01.0.02,--- , 1]

' Particle state is updated as mj. <= mj + (fiL(mp., A\)AX + viwp)A

Audio measurement
Y. Liu, V. Kilic, J. Guan, and W. Wang, "Audio-visual particle flow SMC-PHD filtering for multi-speaker UNIVERSITY OF
tracking”, IEEE Transactions on Multimedia, vol. 22, no. 4, pp. 934-948, 2020 SU RREY
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AV16.3

+ 8.2m >

¢ @]
Camera 2
' Cameral

(h)
Physical setup of the AV16.3 corpus. Some frames from the AV16.3 dataset.
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Performance Metrics

Optimal Sub-pattern Assignment (OSPA) is used to evaluate the performance of the proposed and baseline algorithms

Ny
- ()~ ~7()\a aleYy, _ N
| _min_ > d (g, w7 4 (M — Ny)

OSPA({md kil 12 ) = = _
kSj=1 W5 \ 3,

ESS is widely applied to evaluate the severity of weight degeneracy problem

pag _ (Lith wh)?

N .
D i (wl?;;)Q
UNIVERSITY OF
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e
Results

The experimental results for ZPF, SMS, PPF, GPF, SMC, ASMC and NPF in terms of the OSPA error

45(1) 17.60 23.40 24.50 23.12 29.46 26.07 17.65
45(2) 18.55 23.16 22.26 22.71 29.47 25.97 18.60
45(3) 19.54 23.80 24.34 23.76 28.43 26.41 19.50

Computational cost (s/Sequence) comparison for ZPF, SMS, PPF, GPF, ASMC and NPF

45 263.4 162.2 237.4 490.7 93.1 121.5 197.5
N N> UrNi NpyNn UpgNigNyx UpNg UN;. NNy
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Tracking on the live demo

QUALITY
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Ego-centric AV speaker tracking

The listener (e.g. robot), who
is walking, wears a RGB
camera, a depth camera and a
microphone array.

The speaker, who is speaking,
is also moving.

The aim of this task is to
predict the position or
direction, e.g. Direction of
Arrival (DOA) of the moving
speaker relative to the
listener.

UNIVERSITY OF
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Ego-centric AV speaker tracking

We show the sequences of the AV16.3 dataset and our simulated Ego-AVSL dataset. It can be seen that the main
difference between the egocentric scenario and the conventional scenario is that, the speaker is not alwaysin the

camera view of the listener due to the movement of the listener. The speaker absence poses a significant challenge of
data fusion.

UNIVERSITY OF
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Ego-centric AV speaker tracking

"""" >0 o200
; A
Classiﬁer Classifier

L
> *

Concatenated Encoded CLS

4 Y —
MLP [ MLP
Audio Norm Visual Norm
Encoder A Encoder -
M5A | MSA
h_ 11 * fl _f,'x[] L Jj__’;xll
Paositional AA Positional AA fan
Encoding & Encoding e
Modality Projection l Maodality Projection
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Ego-centric AV speaker tracking - EasyCom dataset ==oo.

B ParticipantID4 B Participant ID 6
~ File: .\Main\Video_Compressed\Session_8\07:00-384 Frame: 118

Head|Bounding{Boxes,
1

A Projectedi

[X] heard this [H] somawhere position

efore, but I don't rememba-

OpticalfAlignment:

[ think, it's kinda lika
the answer. [L] g asking tha guy "are you lying
< and they say yes or no.

Something like that,
- s

\ Participant ID 4 Close Microphone Audio
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: Participant ID 6 Close Microphone Audio )

—

Speech ’
ll ‘ "' %— - Activity

P P 8

ke ?é,ﬂ;lpam ID 2 Glasses _MI:rophono Array Au;ior tz/

e R

I —— R s st e S i v et

0 current 4, 20 20 40 50 60
frame

Time (seconds)
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Ego-centric AV speaker tracking

Methods Mean E1 Std1l Mean E2 Std2
AV cor) 16.77 12.63 6.56 8.77
AV (spec) 8.81 9.63 6.21 6.89
DOA 129.82 18.26 46.45 21.50
DOA+image 66.81 7.89 36.48 8.97
AV-rawaudio 40.14 10.55 140.75 19.58
Ours' 9.33 12.78 4.72 7.15
Ours? 8.00 10.31 4.49 7.53

J.Zhao, Y. Xu, X. Qian, W. Wang, “Audio Visual Speaker Localization from EgoCentric Views”, submitted.

https://arxiv.org/pdf/2309.16308.pdf gﬂﬁigﬁ%
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Conclusion
(: 1 :»

Audio-Visual Speech Source
Separation

 We have presented method for

audio-visual coherence
modelling and incorporate
such information to improve
speech source separation.

* For AV coherence modelling,
we could use statistical models
or dictionary learning models.

e Such information could be
incorporated into conventional
source separation methods
such frequency domain ICA or
time-frequency masking.

Audio-Visual Multi-Speaker Tracking

Audio-visual particle flow is
used to-migrate the-particles
smoothly from the prior to the
posterior density.

A novel relocation step is
proposed.

A novel particle flow assisted
by the label information. A
novel AV likelihood function.
Clustering is replaced by
taking the-mean of the
labelled particles.

Ego-centric AV Speaker Tracking

We have developed a transformer-based
systemand-also created-a simulated
dataset for ego-centric scenario.
The ego-centric tracking scenario is very
complicated. There are many problems
which may happen in real applications
including motion blur, speaker
disappearance, occlusions, surrounding
noise, poor illumination conditions. For
now, we mainly focus on speaker
disappearance,-occlusions-and-audio
noise.

UNIVERSITY OF
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Potential future works

Visual-text prompted speech/audio Ego-centric audio-visual speaker Prompt based speech source
event separation tracking localization and tracking

_____________________________________

Visual or text guidance as to Dealing with high-percentage missing

i VIS Cod E Instructions could be given by a robot
: which speech source to be ! \ measurements to improve the tracking :

as to which speech source needs to

separated. robustness and accuracy. be localized/tracked.
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