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Cocktail party problem

Cocktail party problem may 
involve a few tasks:

How many speakers and where are 
they?
(Localization and tracking）
Who speaks and when?
(Diarization）
Multi-speaker talking simultaneously
(Speech separation）
Said What?
(Automatic speech recognition）
What is the environment?
(Acoustic scene recognition, event 
detection, room acoustics, noise source 
categorization)

Cocktail-party problem (Cherry 1953) or ball-room problem 
(Helmholtz, 1863)

“No machine has yet been constructed to do just that [solving 
the cocktail party problem].” (Cherry, 1957)
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Speech source separation problem & potential solutions

◼  Potential techniques for the speech separation problem

◼ Beamforming

◼ Blind source separation and independent component analysis

◼ Speech enhancement

◼ Sparse representation and matrix factorization

◼ Computational auditory scene analysis (e.g. time-frequency masking)

◼ Learning based techniques

◼ …
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Source separation with time-frequency masking



m

X(m,w)

Sparsity assumption ------ each TF point is dominated by one source signal.
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Speech separation with “ideal” TF masking

6

Psychophysical tests show that the ideal binary mask results in dramatic speech intelligibility 

improvements (Brungart et al.’06; Li & Loizou’08). Example from D.L. Wang, OSU, 2006.
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Adverse effect in speech source separation

➢ Acoustic noise

➢ Reverberations
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Audio visual speech source separation

Audio stream

Visual stream

CT & MRI

Audio stream

Visual stream

Perception
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Audio-visual speech source separation

• W. Wang, D. Cosker, Y. Hicks, S. Sanei, and J. A. Chambers, "Video Assisted Speech Source 
Separation," Proc. IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP 2005), vol. V, pp.425-428, Philadelphia, USA, March 18-23, 2005.

• Q. Liu, W. Wang, and P. Jackson, "Use of Bimodal Coherence to Resolve Permutation Problem in 
Convolutive BSS," Signal Processing, vol. 92, vol. 8, pp. 1916-1927, 2012.

• Q. Liu, W. Wang, P. Jackson, M. Barnard, J. Kittler, and J.A. Chambers, “Source separation of 
convolutive and noisy mixtures using audio-visual dictionary learning and probabilistic time-
frequency masking", IEEE Transactions on Signal Processing, vol. 61, no. 22, pp. 5520-5535, 
2013.

• B. Rivet, W. Wang, S.M. Naqvi, and J.A. Chambers, "Audio-Visual Speech Source 
Separation", IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 125-134, 2014.

• Q. Liu, A. Aubery, and W. Wang, "Interference Reduction in Reverberant Speech Separation with 
Visual Voice Activity Detection", IEEE Transactions on Multimedia, 2014.
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Motivations and challenges 

• The audio-domain SS algorithms degrade 
in adverse conditions. 

• The visual stream contains 
complementary information to the 
coherent audio stream.

How can the visual modality be 
used to assist audio-domain SS 
algorithms in noisy and 
reverberant conditions?O

b
je
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e

• Reliable AV coherence 
modelling

• Bimodal differences in size, 
dimensionality and 
sampling rates

• Incorporation of AV 
coherence into audio-
domain SS methods

Key Challenges

Potential applications

AV-SS

Surveillance
AV speech recognition

Hello world

HCI

Robot audition
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Audio visual feature exaction and selection

Visual feature extraction
Internal lip Width and Height
2-Dimensional

Audio feature extraction
Mel-scale Frequency Cepstrum Coefficients (MFCCs)
Block processing (synchronize with each video frame)
L-dimensional 

Audio-visual space-----Feature Selection

T ( ) [LW( ),LH( )]Tm m m=v

T T T( ) [ ( ),..., ( )]T

1 Lm a m a m=a
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Audio visual coherence modelling using audio mixture models
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Frequency domain speech source separation with ICA
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Audio-visual independent component analysis (ICA)
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Solving the permutation problem

Solution: An iterative sorting scheme
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Demo for the solution to the permutation problem 
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Sparse representation based AV coherence 

modelling with dictionary learning

TF masking, Mandel et al. 2010.
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Dictionary learning 

W. Dai, T. Xu, and W. Wang, "Simultaneous Codeword Optimisation (SimCO) for Dictionary Update and 
Learning", IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6340-6353, 2012.
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AV dictionary learning

MP coding

KSVD

visualaudio

Kmeans

AV dictionary

Converge
No

Yes

End

AV dictionary

AV sequence The coding process relies on the 

matching criterion, how well an atom 
fits the signal in the MP algorithm

The learning process uses two different 

update methods, to accommodate 
different bimodality sparsity constraints. 

A scanning index is proposed to reduce 

the computational complexity.

Q. Liu, W. Wang, et al., “Source separation of convolutive and noisy mixtures using audio-visual 
dictionary learning and probabilistic time-frequency masking", IEEE Transactions on Signal Processing, 
vol. 61, no. 22, pp. 5520-5535, 2013.
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An example of the AV atoms learned from visual speech

Long Speech

The first AV atom
represents the 
utterance “marine" 
/mᵊri:n/ while the 
second one 
denotes the 
utterance
“port" /pᵓ:t/.

Sheerman-Chase et al.

LILiR Twotalk database 
2011

Lip tracking, 
Ong et al. 2008
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Improving audio mask with visual information

Audio mask

Statistically generated by evaluating the IPD and ILD 
of each TF point.

Visual mask

Mapping the observation to the learned AV 
dictionary via the coding stage in AVDL.

The power-law transformation

The power coefficients 
are determined by a non-

linear interpolation with 
pre-defined values
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Audio-visual time frequency mask

Demonstration of 
TF mask fusion in 

AVDL-BSS

Why do we choose 
the power law 
combination, instead 
of, e.g., a linear 
combination?
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Evaluations on audio-visual speech source separation

10 dB Gaussian noiseNoise-free
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Demos 

Mixture Ideal Mandel AV-LIU AVDL-BSS Rivet AVMP-BSS

A

B

C

D

Q. Liu, W. Wang, et al., “Source separation of convolutive and noisy mixtures using audio-visual 
dictionary learning and probabilistic time-frequency masking", IEEE Transactions on Signal Processing, 
vol. 61, no. 22, pp. 5520-5535, 2013.
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Recent developments in speech separation and related tasks

Acknowledgement to Y. Xu, Tencent US, for providing this table. “Multi-modal Multi-talker Speech 
Recognition, Separation and Diarization, Everything Streaming All at Once”
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Data challenges in (AV) speech separation

https://ai.meta.com/datasets/mmcsg-dataset/

MMCSG (Multi-Modal Conversations in Smart Glasses) dataset
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Other recent developments in related field

AV speech separation
R. Gao and K. Grauman, “VISUALVOICE: Audio-Visual Speech Separation with Cross-Modal Consistency,” Proc. CVPR, 2021. 
A. Nagrani, et al., “Seeing Voices and Hearing Faces: Cross-modal biometric matching,” in Proc. CVPR, 2018.

AV general sound separation
C. Gan, et al. “Music Gesture for Visual Sound Separation,” in Proc. CVPR, 2020.
E. Tzinis, S. Wisdom, T. Remez, and J.R. Hershey, “AudioScopeV2: Audio-Visual Attention Architectures for Calibrated Open-
Domain On-Screen Sound Separation", in Proc. ECCV, 2022.

Universal sound separation 

I. Kavalerov, et al., “Universal Sound Separation,” in Proc. IEEE WASPAA, 2019.
Q. Kong et al., “Universal Source Separation with Weakly Labelled Data,” arXiv:2305.07447, 2023.

Text-prompted/language guided universal sound source separation
X. Liu, et al. “Separate What You Describe: Language-Queried Audio Source Separation,” in Proc. Interspeech 2022.
X. Liu, et al. “AudioSep : Separate Anything You Describe”, arXiv:2308.05037, 2023. 

Language guided AV source separation
Dong, et al., “CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos,” in ICLR 2022.
R. Tan, et al., “Language-Guided Audio-Visual Source Separation via Trimodal Consistency,” in Proc. CVPR, 2023. 
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Audio-visual multi-speaker localization/tracking

Aim: estimate the number of speakers and their positions from audio-visual data
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Application examples

Speaker Identification

B

Human-computer/robot Interaction

C

Monitoring

D

Video Conferencing

A
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Challenges of Multi-Speakers Tracking

1. Unreliable Measurements
a. miss-detection
b. occlusion 
c. noise 
d. clutters

2. Unknown and Varying Number of Speakers 
a. born speaker
b. spawned speaker
c. dead speaker

3. Disordered Speakers
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Tracking Modalities

Modality Fusion 
With a single modality, the targets may not be detected. Multi-modality fusion provides an effective solution 
to improve the tracking performance.

Visual Cues Audio Cues 

i.e., color, contour, texture and 
motion, scale-invariant feature 
transform, neural network learned 
features. 
Benefit: Low measurement noise. 
Drawback: Limited tracking area. 

i.e., beamforming, super-resolution 
spectral estimation and time delay 
estimation. 
Benefit: Easy to distinguish occluded 
speakers and unlimited broad tracking area. 
Drawback: High measurement noise.
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Methods for Multi-Speaker Tracking

Three main methods for multi-target tracking:

Joint probabilistic data association 
filter (JPDAF)
i.e. Kalman filter, Extended Kalman 
Filter [T. E. Fortmann et al. 1983] 
and particle filter [Khan et al. 2004].

Multiple hypothesis tracking (MHT)
 i.e. Kalman-Consensus Filter [Olfati-
Saber et al. 2009] and particle filter 
[Kim et al. 2006]. 

Random finite set (RFS) 
i.e. PHD filter [R. Mahler et al. 2003] 
and Bernoulli filter [R. Mahler et al. 
2007].

1 2 3

Benefit: Easily implement. 
Drawback: Speaker state is only 
calculated by nearby 
measurement. 

Benefit: Tracking unknown 
number of speakers.
Drawback: Assume that speakers 
are detected.  

Benefit: Tracking unknown number 
of speakers and speakers can 
disappear. 
Drawback: High computational cost
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Steps of PHD filter

1. Predict particles

2.    Update particles
2.1  Calculate likelihood density
2.2  Update particle weights

3. Cluster particles  

4.   Resample particles 
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PHD filter

Gaussian mixture probability hypothesis 
density filter 

Sequential Monte Carlo probability hypothesis 
density filter 

Advantage

1. A closed form solution. 

2. Without a clustering step. 

Drawback

1. Assume that the system is non-linear 
and non-Gaussian

Advantage

Drawback

1. High accuracy for the non-linear and non-
Gaussian problem, such as speaker tracking. 

1. Weight degeneracy problem. 

2. Need a clustering step.
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Steps of AV-SMC-PHD filter

1. Relocation step 

2.    Update particles
2.1  Calculate likelihood density
2.2  Update particle weights

3. Cluster particles  

4.   Resample particles 

V. Kilic, M. Barnard, W. Wang, A. Hilton, and J. Kittler, "Mean-Shift and Sparse Sampling Based SMC-PHD 

Filtering for Audio Informed Visual Speaker Tracking", IEEE Transactions on Multimedia, vol. 18, no. 10, October 

2016.
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Steps of AV-SMC-PHD filter

1. Relocation step 

2.    Update particles
2.1  Calculate likelihood density
2.2  Update particle weights

3. Cluster particles  

4.   Resample particles 

V. Kilic, M. Barnard, W. Wang, A. Hilton, and J. Kittler, "Mean-Shift and Sparse Sampling Based SMC-PHD 

Filtering for Audio Informed Visual Speaker Tracking", IEEE Transactions on Multimedia, vol. 18, no. 10, October 

2016.
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Drawback of the SMC-PHD filter

1.    Weight degeneracy (major issue) 
2.    Re-location step only with audio measurements (minor issue) 
3.    Update step only with visual measurements (minor)
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Weight Degeneracy and Particle Flow

Y. Liu, V. Kilic, J. Guan, and W. Wang, "Audio-visual particle flow SMC-PHD filtering for multi-speaker 

tracking", IEEE Transactions on Multimedia, vol. 22, no. 4, pp. 934-948, 2020
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Steps of Particle flow

1. Select particles

2.    Calculate the variance and 
mean of particles
3. Calculate particle flow
4. Update particles
5. Update pseudo time
6. Repeat steps 2-5
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Steps of Particle flow

1. Select particles

2.    Calculate the variance and 
mean of particles
3. Calculate particle flow
 

4.   Update particles
5.   Update pseudo time
6.   Repeat steps 2-5

where
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Particle flow

Particle flow is used to adjust the particle states and weights before the update step. 

Zero-diffusion particle flow: Non-zero diffusion particle flow: 

Benefit

Easy for implementation. 

Drawback

Prior and likelihood density are Gaussian.

Benefit

Drawback

Likelihood density can be non-Gaussian. 

Sensitive to parameters
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AV-PF-SMC-PHD filter

Y. Liu, V. Kilic, J. Guan, and W. Wang, "Audio-visual particle flow SMC-PHD filtering for multi-speaker 

tracking", IEEE Transactions on Multimedia, vol. 22, no. 4, pp. 934-948, 2020
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AV16.3

Physical setup of the AV16.3 corpus. Some frames from the AV16.3 dataset. 
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Performance Metrics

ESS is widely applied to evaluate the severity of weight degeneracy problem 

Optimal Sub-pattern Assignment (OSPA) is used to evaluate the performance of the proposed and baseline algorithms 
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Results

The experimental results for ZPF, SMS, PPF, GPF, SMC, ASMC and NPF in terms of the OSPA error 

Computational cost (s/Sequence) comparison for ZPF, SMS, PPF, GPF, ASMC and NPF

Seq ZPF SMS PPF GPF SMC ASMC NPF

45(1) 17.60 23.40 24.50 23.12 29.46 26.07 17.65

45(2) 18.55 23.16 22.26 22.71 29.47 25.97 18.60

45(3) 19.54 23.80 24.34 23.76 28.43 26.41 19.50

Seq ZPF SMS PPF GPF SMC ASMC NPF

45 263.4 162.2 237.4 490.7 93.1 121.5 197.5
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Tracking on the live demo
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Ego-centric AV speaker tracking

The listener (e.g. robot), who 
is walking, wears a RGB 
camera, a depth camera and a 
microphone array.

The speaker, who is speaking, 
is also moving.

The aim of this task is to 
predict the position or 
direction, e.g. Direction of 
Arrival (DOA) of the moving 
speaker relative to the 
listener.
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Ego-centric AV speaker tracking

We show the sequences of the AV16.3 dataset and our simulated Ego-AVSL dataset. It can be seen that the main 
difference between the egocentric scenario and the conventional scenario is that, the speaker is not always in the 
camera view of the listener due to the movement of the listener. The speaker absence poses a significant challenge of 
data fusion.
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Ego-centric AV speaker tracking 
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Ego-centric AV speaker tracking – EasyCom dataset
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Ego-centric AV speaker tracking

https://arxiv.org/pdf/2309.16308.pdf

J. Zhao, Y. Xu, X. Qian, W. Wang, “Audio Visual Speaker Localization from EgoCentric Views”, submitted. 
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Conclusion

Audio-Visual Speech Source 
Separation

Audio-Visual Multi-Speaker Tracking Ego-centric AV Speaker Tracking

1 2 3

• We have presented method for 
audio-visual coherence 
modelling and incorporate 
such information to improve 
speech source separation. 

• For AV coherence modelling, 
we could use statistical models 
or dictionary learning models.

• Such information could be 
incorporated into conventional 
source separation methods 
such frequency domain ICA or 
time-frequency masking. 

• Audio-visual particle flow is 
used to migrate the particles 
smoothly from the prior to the 
posterior density. 

• A novel relocation step is 
proposed. 

• A novel particle flow assisted 
by the label information. A 
novel AV likelihood function. 
Clustering is  replaced by 
taking the mean of the 
labelled particles. 

• We have developed a transformer-based 
system and also created a simulated  
dataset for ego-centric scenario. 

• The ego-centric tracking scenario is very 
complicated. There are many problems 
which may happen in real applications 
including motion blur, speaker 
disappearance, occlusions, surrounding 
noise, poor illumination conditions. For 
now, we mainly focus on speaker 
disappearance, occlusions and audio 
noise. 
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Potential future works

Visual-text prompted speech/audio 
event separation

Ego-centric audio-visual speaker 
tracking

Prompt based speech source 
localization and tracking

1 2 3

Visual or text guidance as to 
which speech source to be 
separated. 

Dealing with high-percentage missing 
measurements to improve the tracking 
robustness and accuracy. 

Instructions could be given by a robot  
as to which speech source needs to 
be localized/tracked. 



THANK YOU
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