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WP3: Robust Audio-Visual Perception of Humans

Task T3.1: Audio-visual speaker detection & tracking.

Task T3.2: Extraction of desired sources (static robot).

Task T3.3: Extraction of desired sources (moving robot).
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Modules

1 Noise reduction based on mixture of deep experts (MoDE)
algorithm

2 Narrowband noise reduction

3 Single microphone source separation and VAD

4 Single microphone speaker extraction and dereverberation

5 Speaker identification using voice embedding with ECAPA2

6 Classification of audio activity patterns (concurrent speaker
detector)

7 Multi-person visual tracking based on FairMOT (detector +
Kalman filter) inc. fish-eye camera correction

8 Audio DOA Est. (GCC-PHAT)

9 Late DOA Audio-Video fusion
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Boxes...

Multi-channel
audio (Raw)

Modules with raw audio as the main input

CSDSeparation

Noise reduction

Extraction

- Speaker Identification
- DOA

Dual speakers

Single speaker

Audio arbiter

ASR

-voice-id: voice-x
-DOA: X deg
-transcription: Hello ARI, nice
to meet you!

Output

Two spea
kers

One speaker

Processed audio
Count of active speakers

Active voices

Challenges

Today... Audio-less audio-video processing
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Preface Background

Background

Lip-to-Speech

Given a soundless video of a person talking, generate the missing
speech as accurately as possible.

Such a task may occur when the speech signal is completely
obfuscated due to background noises.

Challenges

Requires the generated speech to satisfy multiple criteria

Intelligibility.

Synchronization with lip motion.

Naturalness.

Alignment with the speaker’s characteristics such as age, gender,
accent, and more.

Ambiguities inherent in lip motion - several phonemes can be
attributed to the same lip movement sequence.
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Preface Algorithm Highlights

LipVoicer: Highlights

Concept

We use a diffusion model to generate mel-spectrograms for the
silent video.

In addition to the given video, it leverages lip-reading to facilitate
generation.

A neural vocoder is utilised for generating the raw audio.

Driving Ideas

The diffusion model captures the dynamics and characteristics of
the speaker.

The textual modality alleviates the lip motion ambiguity.

Y. Yemini et al. LipVoicer 8 / 28



Diffusion Models

Diffusion Models

Diffusion models are the reversal of a gradual noising process.

x0 - sample from a data distribution.

xt for t ∈ [1, T ] obtained by gradually adding noise, starting from
x0.

Noise is applied so that each instance is noisier than the previous.

xT can be seen as a sample from a predefined noise distribution.
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Diffusion Models Forward Process

Forward Process

When a Gaussian noise is applied

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

βt ∈ [0, 1] for t ∈ [1, T ] selected such that xT ∼ N (xT ;0, I).

According to this choice

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

αt = 1− βt and ᾱt =
∏t

s=1 αs.

Therefore, βt must be chosen so that ᾱT =
∏T

s=1 αs ≈ 0.

Y. Yemini et al. LipVoicer 10 / 28



Diffusion Models Reverse Process

Reverse Process

If the forward process can be reversed, we can create a true sample
x0 from Gaussian noise.

Any intermediate step xt can be sampled given a noise sample
ϵ ∼ N (0, I)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

x0 can be backtraced through

x0 =
1√
ᾱt

(xt −
√
1− ᾱtϵ)

The reverse process is also Markovian.

However, q(xt−1|xt) is intractable.
It can be shown that q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0, t), β̃tI) is
tractable.
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Diffusion Models Reverse Process

Reverse Process

The reversed denoising process is parameterized with a neural
network

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), σ
2
t I)

Training this model is done by sampling a random t ∈ [1, T ] and
minimizing the loss Lt

Lt = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

The loss function can be simplified to

Lt = ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ︸ ︷︷ ︸

xt

, t)||2
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Diffusion Models Halfway Summary

Halfway Summary

Denoising diffusion probabilistic model (DDPM)
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Diffusion Models Guidance

Guidance

One key feature in many diffusion models is the use of guidance
for conditional generation.

Guidance enables us to “guide” our iterative inference process to
generate outputs that are more faithful to our conditioning
information.

For example, in text-to-image, it helps enforce that the generated
images match the prompt text.

Two main guidance types: with or without a classifier
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Diffusion Models Guidance

Classifier Guidance

Assume we wish to sample from q(xt|c).
xt - our sample at the current iteration.
c - some conditioning.
p(c|xt) - a pre-trained classifier.

Our goal is to generate xt−1 that has the right context c.

Bottom Line

The diffusion model returns ϵθ(xt, t).

Classifier guidance alters the noise term that will be used for the
update to

ϵ̂ = ϵθ(xt, t)− ω1

√
1− ᾱt∇xt log p(c|xt)

ω1 is a hyperparameter that controls the degree of guidance.
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Diffusion Models Guidance

Classifier-Free Guidance

Motivation

Remove the dependence on an existing classifier.

In classifier-free guidance, we make two noise predictions

ϵθ(xt, c, t) - with the conditioning context information.
ϵθ(xt,∅, t) - no conditioning.

We then use ϵ̂ = ϵθ(xt, c, t) + ω2(ϵθ(xt, c, t)− ϵθ(xt,∅, t)).

The hyperparameter ω2 controls the guidance strength.
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LipVoicer Overview

LipVoicer

Goal

Given a silent talking-face video V, generate a mel-spectrogram that
corresponds to a high likelihood underlying speech signal.

Denoised 
Mel-spectogram

        Noisy 
Mel-spectrogram

MelGen

Lip Reader

Silent Lip Video
ASR

...Ivy league 
degree and a 
wall street job

Classifier 
Guidance

Noise Prediction 
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LipVoicer Overview

LipVoicer (Cont.)

The proposed method comprises three main components

1. A mel-spectrogram generator (MelGen) which is trained to create
a mel-spectrogram image from V.

2. A pre-trained lip-reading network that predicts, at inference time,
the most likely text from the silent video.

3. An Automatic speech recognition (ASR) system that anchors the
mel-spectrogram recovered by MelGen to the text predicted by the
lip-reader.
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LipVoicer Modules

MelGen

MelGen is a conditional diffusion model that we train to generate
a mel-spectrogram waveform x conditioned on the video V.
We use a DiffWave residual backbone for MelGen.

The representation of V should encapsulate all the needed
information to generate the mel-spectrogram.

It should also be cost-effective.
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LipVoicer Modules

MelGen (Cont.)

Silent Lip Video
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LipVoicer Modules

MelGen (Cont.)

V is replaced by a greyscale mouth crop region video VL and a
randomly chosen a single full-face image IF .

Feature Extraction

For IF , the face embedding f ∈ RDf is computed using ResNet-18.

VL is encoded using a lip-reading architecture, resulting in the lip
video embedding m ∈ RN×Dm (N - #frames).

A DDPM is trained to generate the mel-spectrogram conditioned on
the video embedding v following the classifier-free mechanism

ϵmg(xt,VL, I, ω1) = (1 + ω1)ϵθ(xt,VL, I)− ω1ϵθ(xt,∅L,∅I)

where ω1 is a hyperparameter.
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LipVoicer Modules

Text Guidance

Motivation

The text modality can make MelGen robust to scenarios
characterized by an unconstrained vocabulary.

Syllables uttered in a silent talking-face video can be ambiguous.

May consequently lead to an incoherent reconstructed speech.

A pre-trained lip-reading network can be harnessed to ground the
generated mel-spectrogram to the predicted text.

One could add text as a global conditioning, similar to IF .
✗ Ignores the temporal information in the text.

One could also try to align the text and the video

✗ Complicated process.
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LipVoicer Modules

Text Guidance (Cont.)

Proposed Solution

At inference time, we employ text guidance by harnessing the
classifier guidance approach.

Circumvents the challenge of aligning text with video content.

Using a powerful ASR model, we can compute ∇x log p(tLR|x)
needed for guidance.

tLR - the text predicted by a lip-reader.
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LipVoicer Modules

Full Scheme

The inferred noise ϵ̂ used in the inference update step of the diffusion
model is:

ϵ̂ = ϵmg(xt,VL, I, ω1)− ω2

√
1− ᾱt∇xt log p(tLR|xt)

Modified by both classifier guidance and classifier-free guidance.

xt - the mel-spectrogram at time step t of the diffusion inference
process.

ω2 is a hyperparameter.

An ASR is utilised rather than audio-video ASR, to encourage the
model to focus on audio generation.
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Experimental Study

Results

Datasets

We specifically select in-the-wild datasets, LRS2 and LRS3.

Variations in lighting conditions, speaker characteristics, speaking
styles, and speaker-camera alignment.

LRS2

Videos of British English.
Contains roughly 142,000 training videos of
Amounts to 220 hours of speech by various speakers.
In the test set, there are 1,243 videos.

LRS3

Train set: 9,000 different speakers, 151,000 videos, 430 hours of
speech videos.
There are 1,452 videos in the test split.
English, but with different accents including non-native ones.
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Experimental Study

Results: Mean-Opinion-Score
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Experimental Study

Results: Objective Metrics
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Experimental Study

Video Samples

https://lipvoicer.github.io
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