Audio-Visual Processing in SPRING

Sharon Gannot February 21, 2024

WP3: Robust Audio-Visual Perception of Humans

Task T3.1: Audio-visual speaker detection & tracking.Task T3.2: Extraction of desired sources (static robot).Task T3.3: Extraction of desired sources (moving robot).

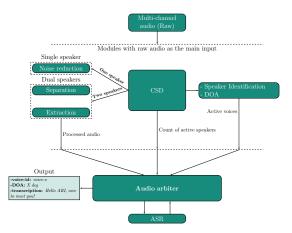
留下 くほと くほど

Modules

- Noise reduction based on mixture of deep experts (MoDE) algorithm
- 2 Narrowband noise reduction
- **③** Single microphone source separation and VAD
- **(9)** Single microphone speaker extraction and dereverberation
- Speaker identification using voice embedding with ECAPA2
- Classification of audio activity patterns (concurrent speaker detector)
- Multi-person visual tracking based on FairMOT (detector + Kalman filter) inc. fish-eye camera correction
- Audio DOA Est. (GCC-PHAT)
- Late DOA Audio-Video fusion

・ 同 ト ・ ヨ ト ・ ヨ ト

Boxes...



LipVoicer:

Generating Speech from Silent Videos Guided by Lip Reading Accepted to ICLR, 2024

Yochai Yemini, Aviv Shamsian, Lior Bracha, Sharon Gannot and Ethan Fetaya

Bar-Ilan University, Israel

留下 くほと くほど

Table of Contents

æ

・ロト ・聞ト ・ヨト ・ヨト

Background

Lip-to-Speech

- Given a soundless video of a person talking, generate the missing speech as accurately as possible.
- Such a task may occur when the speech signal is completely obfuscated due to background noises.

Challenges

Requires the generated speech to satisfy multiple criteria

- Intelligibility.
- Synchronization with lip motion.
- Naturalness.
- Alignment with the speaker's characteristics such as age, gender, accent, and more.
- Ambiguities inherent in lip motion several phonemes can be attributed to the same lip movement sequence.

LIPVOICER: Highlights

Concept

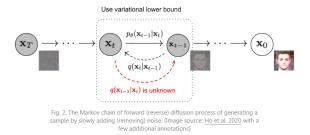
- We use a diffusion model to generate mel-spectrograms for the silent video.
- In addition to the given video, it leverages lip-reading to facilitate generation.
- A neural vocoder is utilised for generating the raw audio.

Driving Ideas

- The diffusion model captures the dynamics and characteristics of the speaker.
- The textual modality alleviates the lip motion ambiguity.

(4回) (4回) (4回)

Diffusion Models



- Diffusion models are the reversal of a gradual noising process.
- x_0 sample from a data distribution.
- x_t for $t \in [1, T]$ obtained by gradually adding noise, starting from x_0 .
- Noise is applied so that each instance is noisier than the previous.
- x_T can be seen as a sample from a predefined noise distribution.

Forward Process

• When a Gaussian noise is applied

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$

β_t ∈ [0, 1] for t ∈ [1, T] selected such that x_T ~ N(x_T; 0, I).
According to this choice

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

- $\alpha_t = 1 \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$.
- Therefore, β_t must be chosen so that $\bar{\alpha}_T = \prod_{s=1}^T \alpha_s \approx 0$.

イロト イボト イヨト イヨト

Reverse Process

- If the forward process can be reversed, we can create a true sample x_0 from Gaussian noise.
- Any intermediate step x_t can be sampled given a noise sample $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

• x_0 can be backtraced through

$$x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon)$$

- The reverse process is also Markovian.
- However, $q(x_{t-1}|x_t)$ is intractable.
- It can be shown that $q(x_{t-1}|x_t, x_0) = \mathcal{N}(x_{t-1}; \tilde{\mu}_t(x_t, x_0, t), \tilde{\beta}_t \mathbf{I})$ is tractable.

- 4 回 ト - 4 三 ト - 4 三 ト

Reverse Process

• The reversed denoising process is parameterized with a neural network

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \ \mu_{\theta}(x_t, t), \sigma_t^2 \mathbf{I})$$

• Training this model is done by sampling a random $t \in [1, T]$ and minimizing the loss L_t

$$L_t = D_{\mathrm{KL}}(q(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t))$$

• The loss function can be simplified to

$$L_t = ||\epsilon - \epsilon_\theta (\underbrace{\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon}_{x_t}, t)||^2$$

Halfway Summary

Denoising diffusion probabilistic model (DDPM)

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Fig. 4. The training and sampling algorithms in DDPM (Image source: Ho et al.

2020)

æ

・ロト ・聞ト ・ヨト ・ヨト

Guidance

- One key feature in many diffusion models is the use of guidance for conditional generation.
- Guidance enables us to "guide" our iterative inference process to generate outputs that are more faithful to our conditioning information.
- For example, in text-to-image, it helps enforce that the generated images match the prompt text.
- Two main guidance types: with or without a classifier

(4月) (4日) (4日)

Classifier Guidance

- Assume we wish to sample from $q(\mathbf{x}_t | \mathbf{c})$.
 - \mathbf{x}_t our sample at the current iteration.
 - $\bullet~{\bf c}$ some conditioning.
 - $p(\mathbf{c}|\mathbf{x}_t)$ a pre-trained classifier.

• Our goal is to generate \mathbf{x}_{t-1} that has the right context \mathbf{c} .

Bottom Line

- The diffusion model returns $\epsilon_{\theta}(\mathbf{x}_t, t)$.
- Classifier guidance alters the noise term that will be used for the update to

$$\hat{\epsilon} = \epsilon_{\theta}(\mathbf{x}_t, t) - \omega_1 \sqrt{1 - \bar{\alpha}_t} \nabla_{\mathbf{x}_t} \log p(\mathbf{c} | \mathbf{x}_t)$$

• ω_1 is a hyperparameter that controls the degree of guidance.

< 回 > < 回 > < 回 >

Classifier-Free Guidance

Motivation

Remove the dependence on an existing classifier.

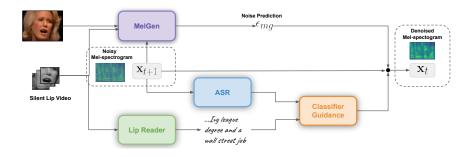
- In classifier-free guidance, we make two noise predictions
 - $\epsilon_{\theta}(\mathbf{x}_t, \mathbf{c}, t)$ with the conditioning context information.
 - $\epsilon_{\theta}(\mathbf{x}_t, \emptyset, t)$ no conditioning.
- We then use $\hat{\epsilon} = \epsilon_{\theta}(\mathbf{x}_t, \mathbf{c}, t) + \omega_2(\epsilon_{\theta}(\mathbf{x}_t, \mathbf{c}, t) \epsilon_{\theta}(\mathbf{x}_t, \emptyset, t)).$
- The hyperparameter ω_2 controls the guidance strength.

< 回 > < 回 > < 回 >

LIPVOICER

Goal

Given a silent talking-face video \mathcal{V} , generate a mel-spectrogram that corresponds to a high likelihood underlying speech signal.



æ

・ロト ・四ト ・ヨト

LIPVOICER (Cont.)

The proposed method comprises three main components

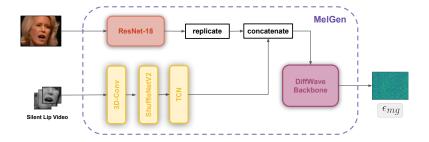
- 1. A mel-spectrogram generator (MelGen) which is trained to create a mel-spectrogram image from \mathcal{V} .
- 2. A pre-trained lip-reading network that predicts, at inference time, the most likely text from the silent video.
- 3. An Automatic speech recognition (ASR) system that anchors the mel-spectrogram recovered by MelGen to the text predicted by the lip-reader.

< 回 > < 三 > < 三 >

MelGen

- MelGen is a conditional diffusion model that we train to generate a mel-spectrogram waveform **x** conditioned on the video V.
- We use a DiffWave residual backbone for MelGen.
- The representation of \mathcal{V} should encapsulate all the needed information to generate the mel-spectrogram.
- It should also be cost-effective.

MelGen (Cont.)



æ.,

イロト イヨト イヨト イヨト

MelGen (Cont.)

 \mathcal{V} is replaced by a greyscale mouth crop region video \mathcal{V}_L and a randomly chosen a single full-face image \mathcal{I}_F .

Feature Extraction

- For \mathcal{I}_F , the face embedding $\mathbf{f} \in \mathbb{R}^{D_f}$ is computed using ResNet-18.
- \mathcal{V}_L is encoded using a lip-reading architecture, resulting in the lip video embedding $\mathbf{m} \in \mathbb{R}^{N \times D_m}$ (N #frames).

A DDPM is trained to generate the mel-spectrogram conditioned on the video embedding \mathbf{v} following the classifier-free mechanism

$$\epsilon_{mg}(\mathbf{x}_t, \mathcal{V}_L, \mathcal{I}, \omega_1) = (1 + \omega_1)\epsilon_{\theta}(\mathbf{x}_t, \mathcal{V}_L, \mathcal{I}) - \omega_1\epsilon_{\theta}(\mathbf{x}_t, \emptyset_L, \emptyset_I)$$

where ω_1 is a hyperparameter.

Text Guidance

Motivation

- The text modality can make MelGen robust to scenarios characterized by an unconstrained vocabulary.
- Syllables uttered in a silent talking-face video can be ambiguous.
- May consequently lead to an incoherent reconstructed speech.
- A pre-trained lip-reading network can be harnessed to ground the generated mel-spectrogram to the predicted text.
- One could add *text* as a global conditioning, similar to \$\mathcal{I}_F\$.
 \$\textstyle Ignores the temporal information in the text.
- One could also try to align the text and the video
 - × Complicated process.

・ 同 ト ・ ヨ ト ・ ヨ ト

Text Guidance (Cont.)

Proposed Solution

- At inference time, we employ text guidance by harnessing the classifier guidance approach.
- Circumvents the challenge of aligning text with video content.
- Using a powerful ASR model, we can compute $\nabla_{\mathbf{x}} \log p(t_{LR}|\mathbf{x})$ needed for guidance.
- t_{LR} the text predicted by a lip-reader.

< 回 > < 三 > < 三 >

Full Scheme

The inferred noise $\hat{\epsilon}$ used in the inference update step of the diffusion model is:

$$\hat{\epsilon} = \epsilon_{mg}(\mathbf{x}_t, \mathcal{V}_L, \mathcal{I}, \omega_1) - \omega_2 \sqrt{1 - \bar{\alpha}_t} \nabla_{\mathbf{x}_t} \log p(t_{LR} | \mathbf{x}_t)$$

- Modified by both classifier guidance and classifier-free guidance.
- \mathbf{x}_t the mel-spectrogram at time step t of the diffusion inference process.
- ω_2 is a hyperparameter.
- An ASR is utilised rather than audio-video ASR, to encourage the model to focus on audio generation.

Results

Datasets

- We specifically select in-the-wild datasets, LRS2 and LRS3.
- Variations in lighting conditions, speaker characteristics, speaking styles, and speaker-camera alignment.

• LRS2

- Videos of British English.
- Contains roughly 142,000 training videos of
- Amounts to 220 hours of speech by various speakers.
- In the test set, there are 1,243 videos.
- LRS3
 - Train set: 9,000 different speakers, 151,000 videos, 430 hours of speech videos.
 - There are 1,452 videos in the test split.
 - English, but with different accents including non-native ones.

▲御▶ ▲理▶ ▲理≯

Results: Mean-Opinion-Score

	Intelligibility	Naturalness	Quality	Synchronization
GT	4.33 ± 0.04	4.43 ± 0.04	4.34 ± 0.04	4.39 ± 0.04
LIP2SPEECH (Kim et al., 2023) VCA-GAN (Kim et al., 2021)	$2.07 \pm 0.08 \\ 1.77 \pm 0.08$	$\begin{array}{c} 1.98 \pm 0.08 \\ 1.85 \pm 0.09 \end{array}$	$\begin{array}{c} 1.93 \pm 0.08 \\ 1.77 \pm 0.08 \end{array}$	$2.66 \pm 0.10 \\ 2.34 \pm 0.09$
LIPVOICER (OURS)	$\textbf{3.53} \pm \textbf{0.07}$	$\textbf{3.54} \pm \textbf{0.08}$	$\textbf{3.69} \pm \textbf{0.08}$	$\textbf{3.82} \pm \textbf{0.07}$

Table 1: LRS2 Human evaluation (MOS).

	Intelligibility	Naturalness	Quality	Synchronization
GT	4.38 ± 0.03	4.45 ± 0.03	4.42 ± 0.03	4.36 ± 0.03
LIP2SPEECH (Kim et al., 2023) SVTS (de Mira et al., 2022) VCA-GAN (Kim et al., 2021)	$\begin{array}{c} 2.21 \pm 0.08 \\ 2.17 \pm 0.08 \\ 2.19 \pm 0.08 \end{array}$	$2.20 \pm 0.09 \\ 2.15 \pm 0.09 \\ 2.20 \pm 0.09$	$2.01 \pm 0.07 \\ 1.99 \pm 0.07 \\ 2.08 \pm 0.08$	$\begin{array}{c} 2.69 \pm 0.08 \\ 2.71 \pm 0.09 \\ 2.71 \pm 0.08 \end{array}$
LIPVOICER (OURS)	$\textbf{3.44} \pm \textbf{0.07}$	$\textbf{3.52} \pm \textbf{0.07}$	$\textbf{3.42} \pm \textbf{0.08}$	$\textbf{3.56} \pm \textbf{0.07}$

Table 2: LRS3 Human evaluation (MOS).

æ

イロト イヨト イヨト イヨト

Results: Objective Metrics

	WER \downarrow	STOI-Net ↑	DNSMOS \uparrow	LSE-C↑	LSE-D↓
GT	1.5%	0.91	3.14	6.840	7.194
LIP2SPEECH VCA-GAN	51.4% 100.7%	0.70 0.51	$\begin{array}{c} 2.37\\ 2.26\end{array}$	6.815 3.369	7.370 10.703
LIPVOICER (OURS)	17.8%	0.91	2.89	6.600	7.840

Table 3: Performance comparison between LipVoicer and the baselines on LRS2.

	WER \downarrow	STOI-Net↑	DNSMOS \uparrow	LSE-C \uparrow	LSE-D \downarrow
GT	1.0%	0.93	3.30	6.880	7.638
LIP2SPEECH	57.4%	0.67	2.36	5.231	8.832
SVTS	82.4%	0.65	2.42	6.018	8.290
VCA-GAN	90.6%	0.63	2.27	5.255	8.913
LIPVOICER (OURS)	21.4%	0.92	3.11	6.239	8.266

Video Samples

https://lipvoicer.github.io

Э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト