

UNIVERSITY OF LINCOLN

AUTONOMOUS ROBOTS IN THE WILD

ADAPTING FROM AND FOR INTERACTION

Prof Marc Hanheide

Director Lincoln Centre for Autonomous Systems Director EPSRC Centre for Doctoral Training in Agri-Food Robotics

SoRAIM Winter School

https://www.hanheide.net/ https://lcas.lincoln.ac.uk Marc Hanheide, L-CAS, University of Lincoln

Dr Junfeng Gao

Dr Mubeen Ghafoo

EPSRC Centre for Doctoral Training in Agri-Food Rebetics

Dr Mohammed Al-Khafajiy

Tooogie 121 ooogie man	- wonen 🐅 opringp	au nomini 🔄 nec	ad cater i El Spring tu
amazon.co.uk	Hello Marc. We have reco	ommendations for you. (Deals of the Week 0	Not Marc?) Sift Cards Gifts & Wish Lists
Shop All Departments 🛛 😒	Search All Departmen	nts 🔻	
Books	Advanced Search	Browse Genres	New & Future Releases

Your Service Robot

No customer reviews yet. Be the first,

RRP: £2500.00

Price: £2340.00 & this item Delivered FREE in th

Temporarily out of stock.

Order now and we'll deliver when available. We'll e-mail you with charged when we ship the item. Dispatched from and sold by Amazon.co.uk. Gift-wrap available.

Share your own customer images Search inside this book

Product details

robots that are

robots that have some common-sense

					Visit our	new Pet Suppli
						Your Account
				1 😳 [🐺 Basket	Wish L
Bestsellers	Paperbacks	Audio Books	Bargain Books	Spec	cial Offers	Sell Your Bo
he UK with Super	r Saver Delivery	y. <u>See details an</u>	d conditions	he	Que Ac Sign in to t	antity: 1 • id to Basket or um on 1-Click or
an escinated derivery	date as soon as we	nave more mormatic	on. Your account will only	be	More	Id to Wish List
					Have one t	o sell? Sell you
					Sha	are 🖂 📑 📴

robots that can

Machine Learning

Artificial Intelligence

Exploitation of structure for **improved** performance

Human-Robot

robots that are

Robots that are (have to be) (have to social" to inherently constraints

Long runtimes in everyday environments

Novel opportunities to **learn** structure environment

Robust Mobile Robotic Systems for Longterm Deployment

- "Response" to Severin:
 - Been in charge for System Integration and Deployment in 5 EU projects since 2002 (and many other as contributor)
 - Software engineering challenges in (mostly/only??) academia

The Strands Project:

Long-Term Autonomy at its Heart, "Social Robotics" as a (un)welcomed Necessity

http://strands.acin.tuwien.ac.at/

- Long-term autonomy requires robust software
- 6 robots, shared software, 2 application domains
- > 30+ developers

Betty at Transport Systems Catapult, Milton Keynes, UK

Henry at Haus der Barmherzigkeit, Vienna, Austria

		Ca		
Deployment		21/3/16	to 27/5/16	1
Working Hours		Weekdays da	rs 7.00 to 19.00	Mos
Distance		~;	Okm	
Tasks			890	
Available Work Time		529 horu	13 minutes	252
Autonomous Ti		no evelopers/	, 13 minutes	138
A%	en	gineers on-	.53%	
		site	Lifetime (TSL)	
Max		25 days, (includes	11:29 hours 8 days off)	- (ir
2nd best		15 days, (includes		
Cumulative		55 days, (includes	2 (in	

Kameras

Interaktions-Kamera

-

that have

Notstopp

Kopf-Kamera

Walking Group

WayPoint26

"The first autonomous mobile robot engaged in physical therapy"

not executing

It's not as easy as it may seem

- Build on top of offthe-shelf ROS **EROS** components
- long-term autonomy requires robust software

https://github.com/lcas/rosdistro/wiki

Challenges

Reproducibility & facilitation of system science (for team and community)

Deployment to test-sites

Example: Robust and dependable Navigation

branch/fork github repository

Navigation Robustness was crucial for STRANDS

Simulation-based Robot testing

Robot testing is also about reality ... and even the best maintained system will fail and have to recover

Strands Navigation (sub-) Architecture (still alive!)

Failures and Trust!

MDMT: Multi-Dimensional Measure of Trust

Daniel Ullman & Bertram F. Malle

CAPACITY TRUST Reliable Subscale: *reliable, predictable, someone you can count on, consistent* ($\alpha = .92$) **Capable Subscale:** capable, skilled, competent, meticulous ($\alpha = .92$)

MORAL TRUST Ethical Subscale: *ethical, respectable, principled, has integrity* ($\alpha = .81$) **Sincere Subscale:** *sincere, genuine, candid, authentic* ($\alpha = .79$)

Taxonomy of Trust-Relevant Failures and Mitigation Strategies

Suzanne Tolmeijer University of Zurich tolmeijer@ifi.uzh.ch

Felix Lindner Ulm University felix.lindner@uni-ulm.de

Astrid Weiss Vienna University of Technology astrid.weiss@tuwien.ac.at

> Thomas M Powers University of Delaware tpowers@udel.edu

MUni mhan

Myrthe L. Tielman Delft University of Technology m.l.tielman@tudelft.nl

Medians of subjective ratings of therapists and observers across slow and fast patient groups for:

overall atmosphere/mood (0=aggrieved, 100=cheerful), **motivation** (0=demotivated, 100=very motivated), group coherence (0=loose, 100=strong)

Table 1: Types of actions which cause a loss of trust: we call these failures

larc Hanheide iversity of Lincoln heide@lincoln.ac.uk	
Clare Dixon	

University of Liverpool cldixon@liverpool.ac.uk

Failure type:	Action by	Meant to act this way	In retrospect, should actor be- have this way?	Description
Design	System	Yes	No	System does what it's been made to do, but the system should not actually behave t
System	System	No	No	System doesn't do what it's been made
Expectation	System	Yes	Yes	System does what it's been made to do pected something different to happen. In tem should still behave this way
User	User	No	If design fail: yes If expectation fail: no	User behaves in a way they are not supp a problem if leading to other type of fail

Requesting Human's help (empowerment to increase trust)

Unacceptable Incompetence

Appearance explains incompetence / lack of capacity (Transparent)

People are willing to help robots (to some extent)

Don't make the same mistake again! Learning by Demonstration (in the wild)

F. Del Duchetto et al., "Do Not Make the Same Mistakes Again and Again: Learning Local Recovery Policies for Navigation From Human Demonstrations," IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4084-4091, Oct. 2018.

Learning about your Users & Usage Patterns

"Getting better on the job"

Bellbot

Info Terminal

Walking Group

- data recorded:
- where is the robot when?
- **did** people use the robot where it was? (success!)

HRI 2017: The When, Where, and How: An Adaptive Robotic Info-Terminal for Care Home Residents – A long-term Study

Spatio-Temporal Modelling

 FreMEn method assumes that the probabilities of the some phenomena are influenced by hidden processes which might be **periodic**.

Kindergarten

FreMEn?

- How:
- (binary) states $s_{j}(t) = \{0, 1\}$ $s(t) = [s_{1}(t), s_{2}(t), \dots, s_{J}(t)]^{T}$
- derive spectral model using FT

$$S(\omega)=FT(s(t))$$

keep N the most prominent S

http://fremen.uk

Periodicity in all sort of states?!

scene(Monitor, Keyboard, Laptop, Cup, Bottle) ⇔ in-front-of(Keyboard, Monitor)∧ left-of(Laptop, Keyboard)∧ right-of(Cup, Keyboard)∧ behind-of(Bottle, Cup)∧ close-to(Bottle, Cup).

$s(t) = [s_1(t), s_2(t), \dots, s_J(t)]^T$ $S(\omega) = FT(s(t))$

-> To	

Choosing the next location

- predicted utility of a location *l*: $u_l(t) = \epsilon h(p_l(t)) + (1 \epsilon) p_l(t)$
- use utility to sample next location to go, greedily, new place every 10 minutes • Here we set $\varepsilon = 0.5$ (exploration-exploitation ratio)
- start with $p_i(t) = 0.5$ at the beginning
- more on exploitation-exploration and planning horizons in Kulich, M., Krajnik, T., Preucil, L., and Duckett, T. To explore or to exploit? Learning humans' behaviour to maximize interactions with them. In Proceedings of the Workshop on Modelling and Simulation for Autonomous Systems (MESAS)

70%

M

6.67

More and more interactions

- Linear regression on average success rates per day.
- rejection of H0 (constant number of interactions) with p=0.000674.

LINCOLN

Lindsey in the Museum 2018-2023

https://lcas.lincoln.ac.uk/wp/projects/lindsey-a-robot-tour-guide/

The Collection

Death and Burial tour

TASK_STARTED

Stop robot tasks

interfaceS

/mam task serve

Therefore is recording another set data for estentific purposes. Ask for the leaflat at the reception dask of the museum to read the Da

Total deployment duration: 3.3 years

- Days of operation:
- Distance travelled: 1118 km
- Time interacting with visitors: 75.8%

The Collection

>15,000 interactions with the museum's visitors

Reinforcement learning in the public domain?

- Lindsey is a tour guide robot in The **Collection Archeological Museum**
- Can we learn better tours through long-term interaction with the public?

"Getting better on the job"

sanal seso enabrio

Tour participants per day

UNIVERSITY OF LINCOLN ROSAHR

Are You Still With Me? Continuous Engagement Assessment From a Robot's Point of View

Francesco Del Duchetto*, Paul Baxter and Marc Hanheide

Lincoln Centre for Autonomous Systems, School of Computer Science, University of Lincoln, Lincoln, United Kingdom

https://github.com/LCAS/engagement_detector

Reinforcement learning in the public domain?

Del Duchetto, F., Baxter, P., & Hanheide, M. (2020). Are you still with me? Continuous engagement assessment from a robot's point of view. *Frontiers in Robotics and AI*, 116.

https://github.com/LCAS/engagement_detector

Tour structure depending on current engagement and state

values are red for LOW, blue for MEDIUM and green for HIGH

Upper-Confidence-Bound Value-Iteration

UNIVERSITY OF LINCOLN

LINCOLN INSTITUTE FOR AGRI-FOOD TECHNOLOGY

AGRUFOOD TECHNOLOGY

Social HRI in Agriculture

Innovate UK

supporting fruit pickers
up to 20% productivity gain through autonomous transport

Fleet Management

The robotic fleet will be coordinated so that each robot is assigned the most urgent task such as tray delivery or transportation to a cold store. The fleet control system will remember where and when a picker was approached by a robot and learn when the next call is likely given work rates and patterns. The system will also allow for monitoring and manual intervention by a human operator.

Autonomous Operation

Throught the use of affordabale sensor technology the robots will be able to move automously while conducting different tasks. Key navigation elements will include real time modelling obstacles in environment from experience and embedded dynamic obstacles detection (pickers, trays, other robots).

Robotic Platform

The robotic platform called Thorvald is a versatile four-wheel drive electrical rover manufactured by SAGA ROBOTICS. The robot has superior manoeuvrability and duty cycle. The robot's design is modular and can easily be adapted to different working conditions. Due to its low weight, Thorvald will not cause soil compaction and has a very low power consumption.

Safe Human-Robot Collaboration

The system will be capable of safe navigation and be able to optimise delivery time while not compromising safety of other pickers. It will be capable of people detection and tracking. A picker will call a robot using a mobile or other handheld device.

Summon a robot to help

- Embedded "Smart Trolley" system
 - GPS
 - 4G/5G communication

Using Robotics Tech to improve "noisy" sensors

- GPS noisy (~3m) measu (even worse in tunnels v beams)
- Idea:
- Use knowledge of "roa

- 2.

sation (t=0):
$$p_{t=0}^{i}(.) \sim \mathcal{N}\left(g_{t=0}, \sigma\right)$$

where p_0^i is i^{th} particle and g_0 is the GNSS location at t=0

Prediction (t>0): Predict future states of particles. Particles can only move to nodes connected by edges (neighbour)

Probability of a particle i moving out from a node j:

$$\left(\right) = 1 - e^{\left(-\lambda \tau_{i}^{j}\right)}$$

Continuous Time: exponential distribution of leaving a node to go to neighbour node

where τ_i^j is the duration of particle *i* at node *j* and λ determines how fast the picker is moving

Robots supporting pickers and other jobs in strawberry fields

MesaPro

- Interaction modalities vary greatly by domain
- Regulations and safety play a key role in the workplace (and other domains)

Embrace the Change: Prospects and Challenges of Long-term Autonomy and Interaction

https://lcas.lincoln.ac.uk/

Robots do fail: (interactive) Recovery behaviours are needed. Robust software is prerequisite.

Learning **routines** can help building more effective and efficient systems, spectral models are very powerful to improve long-term navigation.

Remaining Challenges for Robots

Christmas market

28/02/2017

receptionist to move it away.

LINCOLN

10/03/2017

https://lcas.lincoln.ac.uk/

