
AUTONOMOUS ROBOTS IN THE WILD 

ADAPTING FROM  AND FOR  INTERACTION

Prof Marc Hanheide 
Director Lincoln Centre for Autonomous Systems 
Director EPSRC Centre for Doctoral Training in Agri-Food Robotics  

SoRAIM Winter School



https://www.hanheide.net/ 
https://lcas.lincoln.ac.uk 

Marc Hanheide, L-CAS, University of Lincoln

● Interested in long-term 
autonomy for (mobile) robots 
in human-shared spaces 

● Aspects of actual and 
perceived safety in HRI 

● Software architectures for 
dependable, adaptive, long-
term robotic systems 

● In agriculture, nuclear robotics, 
homes, and public spaces

https://www.hanheide.net/
https://lcas.lincoln.ac.uk


robots that are robots that can robots that have some 
common-sense



Robust, 
intelligent, 

autonomous 
behaviour

Long run-
times in 
everyday 

environments

Novel 
opportunities 

to learn 
structure 

environment

Exploitation of 
structure for 
improved 

performance

robots that are 

robots that can 

robots that have some 
common-sense

Machine 
Learning

Human-
Robot 

Artificial 
Intelligence Robots th

at are 

(have to be) 

inherently “social”



Robust Mobile Robotic Systems for Long-
term Deployment

• “Response” to Severin: 
• Been in charge for System Integration and Deployment in 

5 EU projects since 2002 
(and many other as contributor) 

• Software engineering challenges in (mostly/only??) 
academia

http://www.youtube.com/watch?v=67ul8Ix8ehs


• Long-term autonomy 
requires robust software 

• 6 robots, shared software,  
2 application domains 

• > 30+ developers

STRANDS

Spatio-temporal representation and 
activities for cognitive control in long-
term scenarios

The Strands Project:  
Long-Term Autonomy at its Heart, 
“Social Robotics” as a (un)welcomed 
Necessity 

http://strands.acin.tuwien.ac.at/ 

http://strands.acin.tuwien.ac.at/
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Henry at 
Haus der Barmherzigkeit, 
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Care Y3 Care Y2

Deployment 21/3/16 to 27/5/16 18/5/15 to 17/6/15

Working Hours Weekdays days 7.00 to 19.00 Most days 8.00 to 21.00

Distance ~50km 23.41km
Tasks 1890 865

Available Work Time 529 hours, 13 minutes 252 hours, 54 minutes

Autonomous Time 209 hours, 13 minutes 135 hours, 20 minutes

A% 39.53% 53.51%

Total System Lifetime (TSL)

Max 25 days, 11:29 hours 
(includes 8 days off)

15 days, 5:33 hrs  
(includes 5 days off)

2nd best 15 days, 9:30 hours 
(includes 4 days off)

Cumulative 55 days, 9:57 hours 
(includes 16 days off)

29 days, 5:53 hrs  
(includes 10 days off)

no 
developers/

engineers on-
site

no 
developers/

engineers on-
site



Bellbot

Info Terminal

(later)

“The first autonomous mobile 
robot engaged in physical 

therapy”

Walking Group



• Build on top of off-
the-shelf ROS 
components 

• long-term 
autonomy requires 
robust software

It’s not as easy as it may seem

https://github.com/lcas/rosdistro/wiki 

https://github.com/lcas/rosdistro/wiki


Challenges
Heterogeneous (and 

independent) group of 
developers

Supervisors’ focus on 
publications 
(rightly so)

“Hacking for paper” attitude

not well-trained developers
Reproducibility & facilitation 

of system science  
(for team and community)

Robustness

Deployment to test-sites



Some (for us) working solutions back then and now

Heterogeneous (and 
independent) group of 

developers

not well-trained developers

Robustness

2016

❏ “Force” developers to share code (github) and adopt fork and pull 
model and continuous integration with email notification

❏ Team of 3-4 software managers, who review code and approve 
releases

❏ Utilise Continuous Integration and DevContainers

Adopt OSRF 
(ROS) build farm 

and extend it

2023

Containerisation

Standardised 

Dev Container

GitHub

Actions



Example: Robust and dependable Navigation

modify 
code

branch/fork 
github 

repository

commit to 
branch/

fork

open 
github pull 

request

CI testinginspect 
error

Manager 
merges 
code

Navigation Robustness 
was crucial for STRANDS



Simulation-based Robot testing

github pull request

jenkins pull request 
builder

launch MORSE 
simulation

run defined unit test & 
record result

modify 
code

branch/fork 
github 

repository

commit to 
branch/

fork

open 
github pull 

request

CI testinginspect 
error

Manager 
merges 
code



Robot testing is also about reality 
	 	 … and even the best maintained system will fail and have to recover



Strands Navigation (sub-) Architecture (still alive!)

Localisation

& Navigation

Continuous

Topological

Monitoring

Executive

Control Task Executor Scheduler

Nav Learning

Sleep and retry

Backtrack

Request help

move-base and/or thin-
navigation + specific nav 
behaviours



Failures and Trust!
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MDMT: Multi-Dimensional Measure of Trust 
Daniel Ullman & Bertram F. Malle 

 
OVERVIEW 

The Multi-Dimensional Measure of Trust (MDMT) is designed to be an intuitive and comprehensive 
measure of trust that is simple to administer in person or online. The MDMT was created to address the 
pressing need for valid measurement tools in the domain of human-robot trust but can also be used in 
human-human trust situations. The MDMT consists of 16 items that assess four differentiable dimensions 
of trust. One can trust an agent because the agent is Reliable, Capable, Ethical, and/or Sincere. These four 
dimensions are organized into two broader factors of trust, CAPACITY TRUST (Reliable, Capable) and 
MORAL TRUST (Ethical, Sincere). The dimensions form subscales of four items each:  
 
CAPACITY TRUST 
Reliable Subscale: reliable, predictable, someone you can count on, consistent (! = .92) 
Capable Subscale: capable, skilled, competent, meticulous (! = .92) 
 
MORAL TRUST 
Ethical Subscale: ethical, respectable, principled, has integrity (! = .81) 
Sincere Subscale: sincere, genuine, candid, authentic (! = .79) 
 

INSTRUCTIONS FOR ADMINISTRATION 
Each of the 16 items is designed to be evaluated on an 8-point discrete rating scale from 0 (Not at all) to 7 
(Very). In situations in which some of the dimensions may not be applicable (e.g., trust in a simple 
machine may make several items unsuitable), each item should also carry a final option, “Does Not Fit,” 
which prevents a forced and possibly meaningless rating. If checked, the item becomes a missing value. 
An example image of the scale is included on the following page. Researchers can recreate the scale in a 
variety of electronic survey environments or can use the following page as a paper version of the survey. 
We recommend that items are represented in blocks of four, with each block containing one item from 
each dimension so that items from any given dimension are not clustered together. 
 
All 16 items of the MDMT are typically administered together to generate four trust dimension scores.  
Alternatively, a subset of the dimensions may be administered (e.g., only the items for Capacity Trust). 
 

INSTRUCTIONS FOR SCORING 
Dimension (subscale) scores are average ratings of the four items constituting the particular dimension 
(e.g., Capable = average ratings of capable, skilled, competent, meticulous). “Does Not Fit” endorsements 
are treated as missing values. To compute a score for Capacity Trust one averages ratings on the eight 
items constituting the Reliable and Capable subscales; for Moral Trust, one averages ratings on the eight 
items constituting the Ethical and Sincere subscales.   
 

CONDITIONS OF USE 
The MDMT is intended to be used by researchers studying trust and is free for this purpose. 
If you use the MDMT please email us at scsrc@brown.edu to help with community validation of the 
measure. We plan to coordinate a collective validation effort and joint publication with users.  
When using the current version of the MDMT (2019-04-01), please cite the following publication: 
Ullman, D., & Malle, B. F. (2019). Measuring gains and losses in human-robot trust: Evidence for 
differentiable components of trust. In Proceedings of the 14th ACM/IEEE International Conference on 
Human-Robot Interaction, 618-619. 

MDMT Version Date: 2019-04-01 © 2019 Daniel Ullman & Bertram F. Malle 
 

MDMT: Multi-Dimensional Measure of Trust 
Daniel Ullman & Bertram F. Malle 

 
OVERVIEW 

The Multi-Dimensional Measure of Trust (MDMT) is designed to be an intuitive and comprehensive 
measure of trust that is simple to administer in person or online. The MDMT was created to address the 
pressing need for valid measurement tools in the domain of human-robot trust but can also be used in 
human-human trust situations. The MDMT consists of 16 items that assess four differentiable dimensions 
of trust. One can trust an agent because the agent is Reliable, Capable, Ethical, and/or Sincere. These four 
dimensions are organized into two broader factors of trust, CAPACITY TRUST (Reliable, Capable) and 
MORAL TRUST (Ethical, Sincere). The dimensions form subscales of four items each:  
 
CAPACITY TRUST 
Reliable Subscale: reliable, predictable, someone you can count on, consistent (! = .92) 
Capable Subscale: capable, skilled, competent, meticulous (! = .92) 
 
MORAL TRUST 
Ethical Subscale: ethical, respectable, principled, has integrity (! = .81) 
Sincere Subscale: sincere, genuine, candid, authentic (! = .79) 
 

INSTRUCTIONS FOR ADMINISTRATION 
Each of the 16 items is designed to be evaluated on an 8-point discrete rating scale from 0 (Not at all) to 7 
(Very). In situations in which some of the dimensions may not be applicable (e.g., trust in a simple 
machine may make several items unsuitable), each item should also carry a final option, “Does Not Fit,” 
which prevents a forced and possibly meaningless rating. If checked, the item becomes a missing value. 
An example image of the scale is included on the following page. Researchers can recreate the scale in a 
variety of electronic survey environments or can use the following page as a paper version of the survey. 
We recommend that items are represented in blocks of four, with each block containing one item from 
each dimension so that items from any given dimension are not clustered together. 
 
All 16 items of the MDMT are typically administered together to generate four trust dimension scores.  
Alternatively, a subset of the dimensions may be administered (e.g., only the items for Capacity Trust). 
 

INSTRUCTIONS FOR SCORING 
Dimension (subscale) scores are average ratings of the four items constituting the particular dimension 
(e.g., Capable = average ratings of capable, skilled, competent, meticulous). “Does Not Fit” endorsements 
are treated as missing values. To compute a score for Capacity Trust one averages ratings on the eight 
items constituting the Reliable and Capable subscales; for Moral Trust, one averages ratings on the eight 
items constituting the Ethical and Sincere subscales.   
 

CONDITIONS OF USE 
The MDMT is intended to be used by researchers studying trust and is free for this purpose. 
If you use the MDMT please email us at scsrc@brown.edu to help with community validation of the 
measure. We plan to coordinate a collective validation effort and joint publication with users.  
When using the current version of the MDMT (2019-04-01), please cite the following publication: 
Ullman, D., & Malle, B. F. (2019). Measuring gains and losses in human-robot trust: Evidence for 
differentiable components of trust. In Proceedings of the 14th ACM/IEEE International Conference on 
Human-Robot Interaction, 618-619. 

Capacity

Morality

!

Medians of subjective ratings of therapists and observers across slow and fast 
patient groups for:  
	 overall atmosphere/mood (0=aggrieved, 100=cheerful),  
	 motivation (0=demotivated, 100=very motivated),  
	 group coherence (0=loose, 100=strong) 



Requesting Human’s help (empowerment to increase trust)

Capacity?!
Appearance explains 
incompetence / lack of 
capacity (Transparent)

Unacceptable 
Incompetence

People are willing to help 
robots (to some extent)



Don’t make the same mistake again! 
Learning by Demonstration (in the wild)

4086 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 2. Map of the care home, with superimposed topological map. The annotations indicate specific waypoints relevant for the robot’s task and the areas in which
video recording was permitted for further analysis in order to comply with local privacy regulations. The analysis presented in this letter involves the navigation
errors along all edges in this topological map.

Fig. 3. Edges in topological map requiring human recovery, ordered with
respect to the number of issued recovery actions.

Analysis of Navigation Issues and Recoveries: Over the three
individual deployments, the robot travelled more than 160 km,
during which a total of 5591 recoveries (autonomous and involv-
ing the human) were required. This averages to almost 35 re-
coveries per km – or, in other words, one recovery every 28.6 m
travelled, in an environment spanning an area of approximately
54 m × 135 m, as shown in Fig. 2. In many of these cases, the
robot could successfully recover using one of the hard-coded
autonomous recovery behaviours; yet in 1605 cases (i.e., 28.7%
of all cases) human help was required, as all autonomous re-
coveries had failed to succeed. Fig. 3 presents a breakdown of
the cases where the robot sought help from humans (e.g., staff,
visitors or residents in the care home), in the form of an ordered
histogram. It shows the number of requests occurring at each
edge within the topological map shown in Fig. 2; hence indi-
cates the spatial distribution of the problem areas. As seen in the
figure, the edge where human recovery was requested most is
plotted as the leftmost bar with a total of 146 recovery requests.
Out of these 146 cases, only in 19 cases, the robot received help.
When the robot was not helped, it aborted its current task and
failed the operation, often requiring remote manual recovery by
a technician.

Conclusion and Objectives: The conclusions drawn from this
study directly lead to our objectives in this letter:

1) Failures are spatially clustered
As Fig. 3 shows, 80% of all error cases are distributed over
only about 25 edges in our quite fine-grained topological
map (Fig. 2), indicating a strong dependency of failures on
location. Indeed, it was observed that the robot repeatedly

failed at the very same spot as it was not taking advantage
of the learning opportunities. In this letter, this limitation
shall be addressed by learning suitable recovery strategies
from few demonstrations given by a helping human, to
avoid making the same mistake again and again.

2) Human help is rare and precious
Physical human assistance is a scarce resource. Overall,
out of the 1605 cases where the robot asked for help, only
in 257 (16%) it received help that allowed it to continue
its operation. Furthermore, the number of cases where the
robot was successfully helped by a human varied signif-
icantly between edges. This evidences a need to develop
recovery models that are not bound to specific locations,
but to navigational situations. Hence, another objective of
this study is to correctly classify a known navigational
situation and to invoke the correct recovery policy.

IV. GAUSSIAN PROCESSES FOR LEARNING LOCAL

RECOVERY POLICIES

In this work we describe a LbD framework3 that gives a
robot the ability to detect failures and recover from them during
navigation. During a navigation task, failures are manifested in
different ways (such as spinning in place or crashing against an
obstacle) and they may happen for different reasons (e.g. local
navigation can’t generate a plan or due to sensing errors). In our
context, we define a failure situation as the situation in which
the robot is not able to progress toward the goal, because it is
not moving or it is performing some counterproductive behavior.
Some failures are detected by the underlining navigation system,
whereas others may not. In order to take into account all such
situations independent from the navigation system, we delegate
the task of deciding and signaling a failure situation to the
humans.

Our local navigation framework makes use of a two-layer
cascaded learning approach, where a GP classification model is
trained to detect failure situations, and a GP regression model
is trained to learn local recovery trajectories. We present an
active learning approach, where the human operator presents

3The source code will be available at https://github.com/LCAS

DUCHETTO et al.: DO NOT MAKE THE SAME MISTAKES AGAIN AND AGAIN: LEARNING LOCAL RECOVERY POLICIES 4087

Fig. 4. General software architecture: white boxes indicate the global nav-
igation functionality, whereas the red ones implement our strategy for local
recovery policy generation.

demonstrations when necessary, to incrementally teach the robot
how to handle failure situations. To begin our discussion, we
firstly present our overall navigation architecture, followed by
the methodology behind GPs, the features and the modelling
approach adopted in the experiments.

A. Overall Architecture

Fig. 4 shows the overall software architecture developed in
this study. The global navigation system4 extends the move_base
package from the ROS navigation stack.

Global task planning is done using a conditional Petri net
planner (PNP) [29], which provides high level descriptions of
actions within a topological map of the environment. A topologi-
cal map is an undirected graph, where vertices stand for possible
waypoints that the robot can navigate to, and the edges define
the connections between waypoints. During navigation, PNP
issues goto commands to the topological navigation node [26],
which extracts the goal position and sends that to move_base
2D navigation node to compute commanded velocities to drive
the robot.

In order to deal with failure situations, PNP plan descriptions
are conditioned by execution rules, which provide a mechanism
for interrupting the navigation in case of failures. For more
details on Petri net plans, the reader is referred to [29]. For
the approach in this letter, it is sufficient to consider PNP as
a way to integrate exception handling and therefore recovery
into task planning. Our local recovery framework (red nodes
in Fig. 4) makes use of PNP’s conditioning property and issues
failure signals to override the operation of topological navigation
and move_base. Specifically, failure classifier is responsible for
identifying a navigation failure situation, and issuing a signal to
PNP to demand a recovery action. Receiving this, PNP interrupts
the goto action and invokes the recovery regressor to run a local
recovery policy.

The failure classifier and the recovery regressor constitute the
two layers in our interactive LbD framework. Fig. 5 shows the

4The global navigation system is based on open-source software developed
during the STRANDS project [7].

Fig. 5. Flowchart showing the human-in-the-loop approach for collecting
failure state observations and recovery demonstrations, as well as recovery
execution during goto actions.

process through which the human supplies new failure state ob-
servations and demonstrates recovery trajectories (blue nodes)
to get the robot to execute the learned recovery policy (green
node). The failure classifier is a binary GP classification model
trained with a labelled set of positive and negative observations
for failure states. Positive observations represent the environ-
mental context leading to the failure, and are provided by the
human operator, who interactively signals for a new failure situ-
ation whenever (s)he observes a navigation error. This signalling
halts the global navigation and the corresponding data is added
to the training set, labelled as a positive failure. Once the model
is trained for failure detection, the robot can autonomously de-
tect situations that it cannot handle properly, before they occur.
When a failure is detected, the human is prompted to confirm
the correctness of the detection. In case the human rejects the
detected state as a failure, a negative failure observation is added
to the training set, and the classification model is updated. This
action also resumes the global navigation plan.

In our setup, upon receiving a failure signal, the human is
prompted to assume control of the robot to demonstrate how
to recover from the failure situation. The demonstration is used
to train a GP regression model (recovery regressor), to be used
as the local recovery policy for failure situations. By using a
Bayesian approach we get a variance for the predictions of the
regression model. If the human verifies the pertinence of the
detection, this variance is used to evaluate the goodness-of-fit
for the regression model. In particular, we prevent the execution
of the recovery, in situations where the prediction variance is
too high, i.e. the model is overfitting the data5. In such a case,
the human is asked to provide a new demonstration to improve
model performance. If the variance is smaller than a predefined
threshold τ 6, the GP regression model is used to execute the
learned recovery policy.

5This situation can be encountered especially at the beginning of the trials,
when the model is trained with many features but has too few observations.

6In this study we empirically set τ = 0.03.

F. Del Duchetto et al., “Do Not Make the Same Mistakes Again and Again: Learning Local Recovery Policies for Navigation From Human Demonstrations,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4084–4091, Oct. 2018.

TOTAL Y1-Y4  
Care & Security

Distance (km) 362.48

Mon nav events 8,362

MNE / km 22.81

m / MNE 43.84
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Bellbot

Info Terminal

Walking Group



•data recorded: 
•where is the robot when? 
•did people use the robot where it was? (success!)

Adaptive Info-Terminal

Administration Wing

Kinder-
garten

Cafeteria

Lobby

Therapy Wind
Conference Area

Total 63 days >4000 clicks! 

al(t)

l t

HRI 2017: The When, Where, and How:
An Adaptive Robotic Info-Terminal for Care Home Residents – A long-term Study



•FreMEn method 
assumes that the 
probabilities of the 
some phenomena are 
influenced by hidden 
processes which 
might be periodic. 

Spatio-Temporal Modelling

Frequency Map 
Enhancement 

„FreMEn“
al(t)l t

Administration Wing

Kinder-
garten

Cafeteria

Lobby

Therapy Wind
Conference Area

that the texts were very much readably, 15.4% stated that
they rather were and 15.3% stated that it was (rather) not
readable. In terms of ease of use 61.6% of the older adults
stated that they had rather or no di�culties at all. 38.5%
found it rather or very much di�cult to use the screen. In
terms of cognitive e↵ort of using the screen 46.2% mentioned
that it was no e↵ort at all and 38.5% mentioned that it was
rather no e↵ort. No participant stated that it was very much
an e↵ort to use the screen, 15.4% meant that it rather was
an e↵ort.

5.2 Adaptive Scheduling
The main goal of the adaptive scheduling described in

Sec. 3 is to learn about the best locations and times to of-
fer the info-terminal service, and to verify our hypothesis
H1 which stated that adapting to user needs over space and
time in long-term deployment yields more use of the info-
terminal. Over the 43 days where the info-terminal was
run, the robot o↵ered its service to its users a total of 1770
times. In 760 of these occasions (42.9%), the users actually
used the info-terminal, indicated by clicking on the screen.
Fig. 3 presents the locations at which the info-terminal was
o↵ered, the respective success rates of the provision of the
info-terminal, and the number of clicks recorded for each
task at a location. As described in 3, each of these loca-
tions l was associated with a temporal model pl(t), which
represents the probability of successful interaction at time t.
Thus, one of the results obtained are the temporal models for
the individual locations. Examples of five temporal models
learned during the actual deployment are shown in Figure 5,
which indicates that despite of the fact that the temporal
modelling method could not obtain data from nights (oper-
ations times were restricted to 9am-6pm), it predicted that
during night, the probability of interaction is very low.
This result was obtained trough interpolation from the ob-

servation that early morning and late evening interactions
are less probable than interactions during mid-day. These
models also exhibit both daily and weekly periodicities: one
can see that in some areas, obtaining an interaction on Fri-
day afternoon is slightly less probable than during the other
days. In the case of the Cafeteria temporal model, the in-
terpolation into the night time is actually misleading – here,
the robot observed that the info-terminal at the Cafeteria is
mainly used during four peak times that might correspond
to breakfast, lunch, afternoon tea and dinner. Thus, hav-
ing no data from night, the robot simply assumed that the
Cafeteria is busy every 2-3 hours.
However, the temporal model serves only as a means to

construct a meaningful schedule that improves the chances
that the visitors and sta↵ of the facility use the info-terminal
service. During the initial stages of the deployment, the
robot visited all locations with the same frequency, because
initially, all pl(t) were equal to 0.5. As the robot learned the
model, it started to prefer visiting certain locations at cer-
tain times, which resulted in increased chances of obtaining
an interaction. Figure 6 shows the success rates of interac-
tions over time along with a linear regression model. The
p value of the linear model F-statistics versus a constant
model is 6.74 .10�4, which indicates that the increase of the
interaction success rate is statistically significant with p <
0.001. Thus, we can say with certainty that during the de-
ployment, the robot gradually increased the chance of the
info-terminal usage by the visitors and clients of the facility.

Figure 5: Examples of temporal models of selected
locations.
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Figure 6: Interaction success rate over time.

5.3 Where information is requested
In order to analyse which information user chose to look

at at the various location the info-terminal was o↵ered, a
contingency table of the frequencies of specific information
screen being requested has been computed from the logs of
interactions, shown in table 1. In this table, all locations but
the ”ChargingPoint” that o↵ered info-terminal tasks are in-
cluded. ”ChargingPoint” has been omitted, as it is a special
case where info-terminal was o↵ered all the time when charg-
ing and not specifically scheduled for in most cases. Here,
we counted all interactions (clicks on the screen) that led to
the display of the specific information screen, as described in
Sec. 2.2. Over all the 760 instances users interacted with the
info-terminal, they displayed clicked to see di↵erent informa-
tion screens a total of 2513 times (just above 3.3 interactions
per successful task on average). Multiple clicks per task ex-
ecution can be a result of several users interacting during
the 10 minute window or one user looking at di↵erent in-
formation screens in one session. The data does not allow
to discriminate between these two conditions. However, for
the analysis at hand, this discrimination is irrelevant any-
way, as we are interested to identify only if the information
requested by users is dependent on the location (H2 ).
Overall, the �2 statistics for this contingency table in-

dicate a very significant rejection of the null hypothesis
(df = 33, p < 0.001, overall �2 = 107.8) that the infor-
mation requested is independent of the location the robot
is o↵ering the info-terminal service. Consequently, we can
assume that indeed the kind of information requested is de-
pending on the location where it is requested, confirming
hypothesis H2. Likewise does table 1 highlight once again
the variance in usage of the info-terminal at the di↵erent
locations, exploited in the adaptation of the info-terminal
scheduling.



• How: 
• (binary) states 

  

• derive spectral model using FT 
 

• keep N the most prominent S

FreMEn?

http://fremen.uk

?

http://fremen.uk


Periodicity in all sort of states?!



•predicted utility of a location l: 
•use utility to sample next location to go, greedily, new place every 10 minutes 
•Here we set ε=0.5 (exploration-exploitation ratio)  
• start with pl(t) = 0.5 at the beginning 
•more on exploitation-exploration and planning horizons in  

Kulich, M., Krajnik, T., Preucil, L., and Duckett, T.  To explore or to exploit? Learning humans’ behaviour to maximize 
interactions with them. In Proceedings of the Workshop on Modelling and Simulation for Autonomous Systems (MESAS) 

Choosing the next location

Administration Wing

Kinder-
garten

Cafeteria

Lobby

Therapy Wind
Conference Area

Frequency Map 
Enhancement 

„FreMEn“
l t

During out robot operation, each candidate info-terminal
location is tied to a FreMEn model that maintains the num-
ber of performed interaction attempts n, mean probability
µ, and two sets A, B of complex numbers ↵k and �k that
correspond to the set ⌦ of potential periodicities !k of the
hidden processes that a↵ect the chance of successful inter-
action (i.e. the chance that the info-terminal is used). To
initiate an interaction, the robot positions itself at a given lo-
cation, records the current time t, displays the info-terminal
interface and waits for a predefined amount of time. If the
info-terminal interface is used by anyone during the given
time period, the robot sets the interaction flag a(t) to 1,
otherwise it keeps a(t) equal to 0. After the time period
elapses, the FreMEn model of the given location is updated
as follows:

µ  1
n+1 (nµ+ a(t) ),

↵k  1
n+1 (n↵k + a(t) e�jt!k ) 8!k 2 ⌦,

�k  1
n+1 (n�k + µ e�jt!k ) 8!k 2 ⌦,

n  n+ 1,

(1)

where µ represents the mean, time-independent probability
of interaction, n is the number of interaction attempts per-
formed, and ↵k,�k represent the frequency spectrum of the
history of past interactions a(t). While the absolute value
of each ↵k corresponds to the influence of a hidden process
with the frequency !k on the probability of interaction p(t),
the �k serve as corrections that prevent the model overfitting
during the early stages of model construction.

To predict the probability of interaction at a given time
t, we first construct a set C consisting of complex numbers
�k = ↵k � �k, which are ordered reverse to their absolute
values. Then, we select the first m elements �j along with
their corresponding frequencies !j . The elements �j and
!j , which correspond to the influence and periodicity of the
hidden processes that a↵ect the interaction probability are
then used to estimate the interaction probability at a given
location and time by:

p(t) = &(µ+
mX

j=1

|�j |cos(!jt+ arg(�j))), (2)

where the function &(.) ensures that p(t) 2 [0, 1]. Since we
assumed that the interaction probabilities will be influenced
mainly by daily and weekly routines, we set the constant m
to the value of 2. An overview and additional details of the
FreMEn concept are provided in [11].

3.2 Model exploration and exploitation
However, the spatio-temporal modelling method is not

su�cient by itself. First, in order to create the model and
keep it up to date, the robot must be able to provide the
model with useful data. Second, one has to determine how
to use the predictions to guide the robot in order to max-
imise the number of interactions. Both of these aims have to
take into account the limitations of the robot, especially the
energy-based constraint that requires the robot to recharge
its batteries at least 50% of its operational time.

The first part of the problem, called life-long spatio-
temporal exploration, was studied in [13, 20]. In here, the
authors evaluated several spatio-temporal models and explo-
ration strategies to be able to predict people occurrence in
o�ce and domestic environments. The paper [13, 20] con-

cluded that the best model is based on the FreMEn concept
and the best exploration strategy, i.e. a process that de-
termines which locations to visit and when to visit them,
is based on a Monte-Carlo scheme which takes into account
the information gain obtainable by a visit to a given loca-
tion. In the work presented in [13], the robot would establish
a new schedule each midnight, ensuring that at least 50%
of the time is spend on the charging station. The schedule
would then be followed throughout the day, with occasional
modifications imposed by unexpected events.
Unlike in [13, 20], which aim to create an accurate spatio-

temporal model, but do not need to exploit the information
the model provides, we need an accurate model only be-
cause its predictions are essential to create a schedule for
the info-terminal service. Thus, our strategy needs to take
into account both information gain that keeps the model
up-to-date and the probability of obtaining an actual inter-
action. To construct the schedule for the next day, the robot
partitions the following day to slots of identical duration and
calculates the utility of visiting each location as

ul(t) = ✏h(pl(t)) + (1� ✏) pl(t), (3)

where ✏ represents the exploration/exploitation ratio and
h(p) is the information gain calculated by

h(p) = �p ln2 p� (1� p) ln2(1� p). (4)

After calculating the utility function for all possible times
and locations, a schedule is generated by a Monte Carlo
scheme, which prefers locations and times according to the
utility function ul(t). The exploration/exploitation ratio ✏
determines how much emphasis is given to the model build-
ing compared to the model exploitation. An ✏ equal to 1
would result in a system that builds the best model possi-
ble, while not using it to obtain many interactions. Setting
✏ to 0 will cause the system to try to get many interactions,
but risking that the robot will miss some good locations
and times. For details on the Monte-Carlo based schedule
creation, see the paper [13].

4. STUDIES DESIGN
During each year of the project the robot is deployed

at the same long-term care provider. Key target groups
are older adults with progressed dementia, severe multi-
morbidity or physical deficiencies. Furthermore the care
home features units for persons with vigil coma or advanced
multiple sclerosis. In total 350 beds are provided for per-
manent residency and there is a sta↵ of approximately 465
employees. The robot is deployed only at the ground floor of
the care facility, traversing corridors that link the adminis-
trative wing, with di↵erent o�ces, with a reception hall and
a therapy wing with an ambulance area for acute medical
aid. Hence, the potential user group is very heterogeneous,
ranging from residents with cognitive decline, their visitors,
to employees from di↵erent professions. Corridors are often
crowded with by-passers, either on foot or with the help of
di↵erent walking aids, wheelchairs or bedridden persons.
It is within this environment the robot has been deployed

for a total of 63 days, providing a number of services (see
Section 1) among which is the info-terminal. Two dedicated
studies are presented in this context: (i) a post-hoc analysis
of logged data from the 63 days duration of the long-term
deployment of the info-terminal robot, called ”Long-term
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• Linear regression on average success rates per day. 
• rejection of H0 (constant number of interactions) with p=0.000674.

More and more interactions



Lindsey in the Museum 
2018-2023

https://lcas.lincoln.ac.uk/wp/projects/lindsey-a-robot-tour-guide/



Total deployment duration:  
 3.3 years 
Days of operation: 
 446 days (1.2 years) 
Distance travelled: 
 1118 km 
Time interacting with visitors: 
 75.8% 
>15,000 interactions with the museum's visitors 



• Lindsey is a tour guide robot in The 
Collection Archeological Museum 

• Can we learn better  
tours through long-term 
interaction with the 
public?

Reinforcement learning in the public domain?

“Getting better on the job”



?? https://github.com/LCAS/engagement_detector 

https://github.com/LCAS/engagement_detector


Reinforcement learning in the public domain?

Del Duchetto, F., Baxter, P., & Hanheide, M. (2020). Are you still with me? Continuous 
engagement assessment from a robot's point of view. Frontiers in Robotics and AI, 116.

?? https://github.com/LCAS/engagement_detector 

https://github.com/LCAS/engagement_detector


Tour structure depending on current engagement and state

Different actions chosen by the learned policy for the tour art at different levels of engagement. Engagement 
values are red for LOW, blue for MEDIUM and green for HIGH

Upper-Confidence-Bound Value-Iteration



Getting better on the job!



Social HRI in Agriculture



• supporting fruit pickers 
• up to 20% productivity gain 

through autonomous transport



• Embedded “Smart 
Trolley” system 

• GPS 
• 4G/5G 

communication

Summon a robot to help



• GPS noisy (~3m) measurements 
(even worse in tunnels with metal 
beams) 

• Idea: 
• Use knowledge of “road network

Using Robotics Tech to improve “noisy” sensors



Robots supporting pickers and other jobs in strawberry fields



• Interaction 
modalities vary 
greatly by 
domain 

• Regulations 
and safety play 
a key role in the 
workplace (and 
other domains)

MesaPro



Robots do fail: 
(interactive) Recovery  

behaviours are needed. Robust 
software is prerequisite.

Embrace the 
Change: Prospects and 
Challenges of Long-term 

Autonomy and 
Interaction

Learning routines can help 
building more effective and 
efficient systems, spectral 

models are very powerful to 
improve long-term navigation.

https://lcas.lincoln.ac.uk/ @MarcHanheide

https://lcas.lincoln.ac.uk/


Charging station 
blocked

Sofas on waypoints

Plants and table 
on waypoint

Motor 
failures

Remaining 
Challenges 
for Robots

Christmas market



That’s it folks

https://lcas.lincoln.ac.uk/ @MarcHanheide

https://lcas.lincoln.ac.uk/

