

Robotic Coaches for Mental Wellbeing: From the Lab to the Real World

Hatice Gunes

Full Professor of Affective Intelligence & Robotics

University of Cambridge, Department of Computer Science & Technology

@HatijeGyunesh @AFAR Cambridge

https://www.cl.cam.ac.uk/~hg410 https://cambridge-afar.github.io

- World Health Organization (WHO) reports that mental health conditions have increased +13% in the last decade
- Problem
 - gap between those who require care and those who have access

Potential solution

robots can help assess and promote mental wellbeing by offering

affordable and accessible practices and services

2

Wellbeing Coaching

- Coaching goals are to increase the coachee's:
 - hope
 - goal-striving
 - general well-being
- Different styles of coaching:
 - Cognitive behavioural
 - Positive psychology
 - Mindfulness

3

Social HRI Research Landscape

	Study setting	Robot autonomy	Robot form	Study length & frequency	Involvement
	In the lab	Wizard of Ozz	Mechanical	One-off	Human coach or therapist
	In the wild	Teleoperated	Toy-like	Multi-session	Potential users
		Pre-scripted	Zoomorphic		Human coach & potential users
		Autonomous	Humanoid		
		Adaptive			
	Real-world deployment	Personalized	Comparative	Longitudinal	User-centred and iterative
CA Depart	IVERSITY OF MBRIDGE tment of Computer e and Technology				

Social Robotics for Mental Wellbeing @ Cambridge AFAR Lab

 Goal: Be available where humans cannot be and intervene before issues are exacerbated

• Our Vision

- Autonomous wellbeing coach
- Embodied multimodal interactions
- Long-term, personalized HRI

• Our Approach

- Iterative design approach
 - Learning from experienced human coaches
 - Face-to-face studies to gather interaction data and design

requirements.

5

Mindfulness Session delivered by Pepper Robot

Teleoperated Robot Coaching for Mindfulness Training

• Experiment design

• 5-week mindfulness training delivered by – human coach (HC) & a teleoperated robot coach

I. Bodala, N. Churamani & H. Gunes, "Teleoperated Robot Coaching for Mindfulness Training: A Longitudinal Study", IEEE RO-MAN 2021 Finalist for RSJ/KROS Distinguished Interdisciplinary Research Award.

Longitudinal Changes in the Session Experience Ratings

Longitudinal interactions with RC

• Significant increase in the Robot Motion and Conversation ratings with time

Univariate random-intercept modelling with time as within-subject factor.

I. Bodala, N. Churamani & H. Gunes, "Teleoperated Robot Coaching for Mindfulness Training: A Longitudinal Study", IEEE RO-MAN 2021 Finalist for RSJ/KROS Distinguished Interdisciplinary Research Award.

Longitudinal Changes in the Session Experience Ratings

• Comparing Feelings at the beginning vs. at the end

• Each session promoted significantly positive mood in the participants for both HC and RC

Weeks with significant differences are indicated by *

I. Bodala, N. Churamani & H. Gunes, "Teleoperated Robot Coaching for Mindfulness Training: A Longitudinal Study", IEEE RO-MAN 2021 Finalist for RSJ/KROS Distinguished Interdisciplinary Research Award.

Findings & Limitations Informing the Next Study

Participatory Design: Data Gathering

- 8 prospective users
- 3 well-being coaches
 - Mindfulness / Meditation
 - Solution-Focused Practice
 - Life Coaching

Items			
Pre-discussion survey (in writing)			
Introduction	3 min		
Warm-up discussion about well-being practices	10 min		
Introduction to social robots and demo videos	7 min		
Ideating robotic well-being coach	15 min		
Discussion on robotic well-being coach features and capabilities	20 min		
Conclusion	2 min		
Post-discussion survey (in writing)			

- Interviews & focus group discussions
- Rich qualitative data

M. Axelsson, I. Bodala & H. Gunes, "Participatory Design of a Robotic Mental Well-being Coach", IEEE RO-MAN 2021.

Results

M. Axelsson, I. Bodala & H. Gunes, "Participatory Design of a Robotic Mental Well-being Coach", IEEE RO-MAN 2021.

Thematic Analysis: Results

Findings Informing the Next Study

- Participants receptive to scientific
 evidence, more open to using robot
- Coaches thought robot could perform
 certain well-being practices

Mean and standard errors of participant ratings on attitudes towards a robotic coach pre and post focus group.

P5: "I am always receptive to evidence, if it has been shown to be beneficial I would certainly give it a try, it lessens my skepticism."

C3: "... [the robot] could give the person the sense [that] someone is there for you, present."

Towards Autonomous & Adaptive Robotic Wellbeing Coach

(a) Boumans R, van Meulen F, Hindriks K, et al Robot for health data acquisition among older adults: a pilot randomised controlled cross-over trial BMJ Quality & Safety 2019;28:793-799.

(b) https://www.scmp.com/lifestyle/health-wellness/article/3024028/how-robot-nurses-could-help-care-worlds-elderly-and (c) https://eindhovennews.com/news/2018/06/robot-pepper-helps-children-hospital-visits/

Traditional vs. Continual Learning

Traditional

- Models **trained in isolation** on benchmark datasets.
- Large datasets enable generalisation across contexts.
- **Training data** might be very **different** from **application** scenarios.
- Generalisation comes at the cost of learning individual differences.
- **Cumbersome to** retrain and **update** models.

Continual Learning

- Agents acquire and integrate knowledge incrementally about changing environments.
- Data only made available sequentially.
- Highly sensitive towards changing data conditions.
- Adaptations in learning to avoid forgetting.

CL Problem Formulation:

T. Lesort *et al.*, "Continual learning for robotics: Definition, frame- work, learning strategies, opportunities and challenges," *Information Fusion*, vol. 58, pp. 52–68, 2020.

Traditional vs. Continual Learning

Generalisation for facial expression recognition

(a)

Personalisation to learn individual expressions

(b)

Continual Learning for Affective and Wellbeing Robotics

穷 穷

N. Churamani, M. Axelsson, A. Caldir & H. Gunes, "Continual Learning for Affective Robotics: A Proof of Concept for Wellbeing", ACII-W 2022.

Continual Learning in Action: Wellbeing Coaching

- Positive psychology exercises
 - 2 impactful things in their lives in the recent past
 - 2 things that they felt grateful for in the recent past
 - 2 recent accomplishments in the recent past
- Conditions
 - C1 Static and Scripted Interaction
 - C2 Affect-based Adaptation without Personalisation
 - C3 Affect-based Adaptation with Continual Personalisation

Setup: Pepper interacting with the Participant.

Pepper displaying gestures during the interactions.

- In-the-lab robotic coaching
- Robotic coach **lacks** in **speech** capabilities (understanding / generation)
- A unimodal affect perception model be insufficient
 - explore multimodal perception to better asses participants' (affective) responses
- Continual Learning in action comes with **challenges**

Continual Learning: Challenges & Recommendations

RECOMMENDATIONS FOR AFFECTIVE ROBOTICS					
Recommendation	Why is this important and needed?	How can this be achieved?			
Acquire person-specific data	Adapting learning models to individual prefer- ences requires large amounts of data that can only be sourced through interactions with users.	(1) Conduct introductory HRI rounds to enable the robot to collect additional data about the user. (2) Leverage adversarial learning to train a generative model to simulate additional person-specific data.			
Obtain normative baselines	The robot needs to know the behavioural <i>norm</i> for each user against which deviations can be observed. Deviations help identify shifts in user socio-emotional behaviours and infer changes in interaction context.	(1) Conduct interactions under contextually inert (neutral) situations during introduction rounds. (2) Use the (subtle) deviations from this baseline, given the interaction context, to analyse shifts.			
Extract semantic associations	Adapting the learning for a large number of users is computationally intractable. Learning models will get saturated, not able to remember previous information or learn with new individuals.	(1) Form user groupings, using person-specific attributes (C_u in Eq. 2-3) to learn group-based adaptations. (2) Use unsupervised data clustering to facilitate learning semantic groupings of users.			
Learn contextual affordances	Interactions are driven by context and humans switch between contexts without clear boundaries. Contextual attributions may not always be implicit and need to be learnt separately	(1) Learn context-aware embeddings to distinguish between task boundaries. (2) Use contextual affordances (e.g. T_i in Eq. 3) to facilitate smooth switching between affective HRI contexts.			
Balance memory with computation	The memory-computation trade-off needs to be considered w.r.t the application domain. Adding more memory facilitates rehearsal of past knowl- edge, while additional computation power im- proves adaptation to novel experiences.	(1) Use generative models for pseudo-rehearsal to reduce model's memory foot-print. (2) Offload part of the computation/memory load to RaaS-based solutions to balance old vs. novel learning.			
Allow controlled forgetting	When learning is continuous, redundant infor- mation in the memory/model, is not released, hindering learning capacity of the model.	(1) Utilise forgetting mechanisms (inspired by biological organisms) on unused memory locations or parts of the model, to learn new knowledge.			
Use multiple performance metrics	Benchmark evaluations from conventional ML and CL perspectives are needed for reproducibility and fairness guarantees, and to evaluate model's robustness to dynamic shifts in data distributions.	(1) Report CL performance metrics (Section II- E), along with the classification metrics of F- measure and AUC-ROC scores or reward-function dynamics for behaviour learning.			

N. Churamani, S. Kalkan & H. Gunes, "Continual Learning for Affective Robotics: Why, What and How?", IEEE RO-MAN 2020.

Findings & Limitations Informing the Next Study

- o In-the-lab robotic coaching study
- Robotic coach **lacks** in **speech** capabilities (understanding / generation)
- A unimodal affect perception model be insufficient
 - explore multimodal perception to better asses participants' (affective) responses
- Continual Learning in action comes with **challenges**
- Investigate longitudinal interactions over time
 - to determine whether the **effects hold** (long-term HRI)

• Research questions

Research questions

RQ1 How does the robot form influence coachees' perceptions of the robotic coach in the workplace?

Research questions

RQ2 How do employees perceive the robotic coach's personality, and do the perceptions differ due to form?

• Research questions

Robot Personality

28

Results: Perception of the robots as a wellbeing coach (RQ1)

UNIVERSITY OF CAMBRIDGE Department of Computer Science and Technology

Target vs. Perceived Personality of M and QT coachees

Results: Coach-coachee alliance (RQ3)

"[the correct timing] built up my connection with the robot, and then it went and destroyed all its hard work by [talking] in the wrong places" (QT)

"there's a little emotional connection going", "I do feel an affinity with her" (**M**).

Coachees developed a stronger alliance with Misty robot (M) than with the QTrobot delivering wellbeing exercises

Findings & Limitations Informing the Next Study

- Robotic coach form / embodiment matters
 - Impacting perception of behaviours and personality
- The coach-coachee alliance is essential for successful coaching
 - but is **negatively impacted** by **interaction ruptures**

Interaction Ruptures in Robotic Wellbeing Coaching

• Data annotation

- User awkwardness (e.g., participants may look confused, uncertain, distressed or uncomfortable)
- Robot mistake (e.g., interrupting the coachee, not responding to the coachee)
- Interaction rupture: either the presence of user awkwardness or a robot mistake, or both

Spitale, M., Axelsson, M., & Gunes, H. (2023). Longitudinal Evolution of Coachees' Behavioural Responses to Interaction Ruptures in Robotic Positive Psychology Coaching, Proc. IEEE RO-MAN.

Department of Computer Science and Technology

Spitale, M., Axelsson, M., Kara, N. & Gunes, H. (2023). Longitudinal Evolution of Coachees' Behavioural Responses to Interaction Ruptures in Robotic Positive Psychology Coaching, Proc. IEEE RO-MAN.

Interaction Ruptures in Robotic Positive Psychology Coaching

Examples of interaction ruptures

Spitale, M., Axelsson, M., Kara, N. & Gunes, H. (2023). Longitudinal Evolution of Coachees' Behavioural Responses to Interaction Ruptures in Robotic Positive Psychology Coaching, Proc. IEEE RO-MAN.

L1) Negative perceptions about the robotic coach

- **L2**) No longitudinal personalisation
- L3) Occurrence of interaction ruptures
- **L4**) Limited conversational capabilities

L5) No significant mental well-being improvement

O1) Interactive and responsive robotic coach

- O2) Adaptive robotic coach over time
- **O3**) Interaction rupture detection & repair

O4) LLM integration in the robotic coach

O5) Significant improvement of mental well-being

Spitale, M., Axelsson, M., & Gunes, H. (2023). VITA: A Multi-modal LLM-based System for Longitudinal, Autonomous, and Adaptive Robotic Mental Well-being Coaching. arXiv preprint arXiv:2312.09740.

The VITA System

Code: https://github.com/Cambridge-AFAR/VITA-system

VITA system includes sensor, detector, actuator, dialogue and decision modules using the open-source framework HARMONI

Spitale, M., Axelsson, M., & Gunes, H. (2023). VITA: A Multi-modal LLM-based System for Longitudinal, Autonomous, and Adaptive Robotic Mental Well-being Coaching. arXiv preprint arXiv:2312.09740.

Components of the VITA System

Department of Computer Science and Technology

Spitale, M., Axelsson, M., & Gunes, H. (2023). VITA: A Multi-modal LLM-based System for Longitudinal, Autonomous, and Adaptive Robotic Mental Well-being Coaching. arXiv preprint arXiv:2312.09740.

Reinforcement Learning Pipeline

- Generic pre-trained model using a dataset we collected in our lab
 - 1 well-being coach delivered 4 positive psychology exercises with 5 researchers
- Online adaptive RL:
 - 3 actions
 - 11-element observation space
 - Reward (facial valence and speech duration)

Spitale, M., Axelsson, M., & Gunes, H. (2023). VITA: A Multi-modal LLM-based System for Longitudinal, Autonomous, and Adaptive Robotic Mental Well-being Coaching. arXiv preprint arXiv:2312.09740.

Evaluation of VITA

- In the lab pilot study: 4 researchers, robotic coach delivers 4 positive psychology exercises in 3 conditions each
 - Pre-scripted (Fig.a)
 - Generic RL (Fig.b)
 - Adaptive RL

Spitale, M., Axelsson, M., & Gunes, H. (2023). VITA: A Multi-modal LLM-based System for Longitudinal, Autonomous, and Adaptive Robotic Mental Well-being Coaching. arXiv preprint arXiv:2312.09740.

Real-world study: 17 employees from a tech company interacted with a robotic coach with the adaptive RL embedded over 4 weeks (Fig.c)

- Coachees perceived the VITA adaptive and generic configurations more positively than the pre-scripted one
 - felt understood and heard by the adaptive robotic coach
- VITA adaptive robotic coach **kept learning successfully** by personalising to each coachee
 - did not detect interaction ruptures
- Coachees had significant mental well-being improvements
- The VITA system is open-source and available on Github

Spitale, M., Axelsson, M., & Gunes, H. (2023). VITA: A Multi-modal LLM-based System for Longitudinal, Autonomous, and Adaptive Robotic Mental Well-being Coaching. arXiv preprint arXiv:2312.09740.

What Next? Iterative Design of Repair Strategies (sneak peek)

- Problem: Closer inspection revealed subtle interaction ruptures
- Solution: Iterative design of repair strategies

Axelsson, M., Spitale, M. & Gunes, H. (2024). "Oh, Sorry, I Think I Interrupted You": Designing Repair Strategies for Robotic Longitudinal Well-being Coaching. Proc. ACM/IEEE HRI'24.

@ACM/IEEE HRI'24

Key Takeaways (1)

- Human expert involvement and guidance matters
- Iterative user-centred design is crucial for user acceptance and success
- Use and engagement beyond the novelty effect requires longitudinal HRI
- Deployment in the real world provides real insights for improvement
- Users' perceptions of the robot and its behaviours evolve over time

43

Key Takeaways (2)

• One size **does not fit all**

- Robot embodiment, personality, expressivity and speech are inter-related and need to be considered together for the specific application context
- LLMs are powerful for enhancing the speech processing and generation capabilities of robots, but they **need 'policing'**
- Even within the same user group there is variation → robot learning and adaptation is essential

IEEE RO-MAN 2022 & 2023 Workshop on HRI for Wellbeing (HRI4Wellbeing)

https://hri4wellbeing.github.io/

HRI4Wellbeing Workshop Objectives Speakers Program Submission Organizers Past Workshop

Human-Robot Interaction for Wellbeing Applications in the Real World

Full-day hybrid workshop on August 28th, 2023 as part of the IEEE International Conference on Robot & Human Interactive Communication (RO-MAN 2023)

The main topic of our workshop will be robotic applications for wellbeing in the real world, which is strongly in line with the RO-MAN 2023 theme of "Design a New Bridge for H-R-I", which seeks to address the challenges of developing intelligent robots for human health. Robots are becoming more prevalent in our society for task-oriented goals (e.g., cleaning the house, cooking a meal) and social-oriented interactions such as companionship, assistance, and coaching. We expect robots to share our daily lives in our homes, workplaces, and public spaces.

International Journal of Social Robotics

Special Issue: "Embodied Agents for Wellbeing"

Call for Papers: https://www.springer.com/journal/12369/updates/20296154

Visit <u>Nature news</u> for the latest coverage and read <u>Springer Nature's sta</u>			
Der Springer			
SOCIAL ROBOTICS			
International Journal of Social Robotics			
Journal home > Journal updates > Call for Papers: Embodied Agents for Wellbeing			
Call for Papers: Embodied Agents for			
Wellbeing			

Micol Spitale, University of Cambridge

Katie Winkle, Uppsala University

Emilia Barakova, Eindhoven University of Technology

Hatice Gunes, University of Cambridge

