Robotic Coaches for Mental Wellbeing: From the Lab to the Real World

Hatice Gunes
Full Professor of Affective Intelligence & Robotics
University of Cambridge, Department of Computer Science & Technology

@HatijeGyunesh
@AFAR_Cambridge
https://cambridge-afar.github.io
Motivation

- World Health Organization (WHO) reports that mental health conditions have increased +13% in the last decade

- Problem
 - gap between those who require care and those who have access

- Potential solution
 - robots can help assess and promote mental wellbeing by offering affordable and accessible practices and services
Wellbeing Coaching

- Coaching goals are to increase the coachee’s:
 - hope
 - goal-striving
 - general well-being

- Different styles of coaching:
 - Cognitive behavioural
 - Positive psychology
 - Mindfulness
Social HRI Research Landscape

<table>
<thead>
<tr>
<th>Study setting</th>
<th>Robot autonomy</th>
<th>Robot form</th>
<th>Study length & frequency</th>
<th>Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the lab</td>
<td>Wizard of Ozz</td>
<td>Mechanical</td>
<td>One-off</td>
<td>Human coach or therapist</td>
</tr>
<tr>
<td>In the wild</td>
<td>Teleoperated</td>
<td>Toy-like</td>
<td>Multi-session</td>
<td>Potential users</td>
</tr>
<tr>
<td>...</td>
<td>Pre-scripted</td>
<td>Zoomorphic</td>
<td>...</td>
<td>Human coach & potential users</td>
</tr>
<tr>
<td>...</td>
<td>Autonomous</td>
<td>Humanoid</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Real-world deployment</td>
<td>Personalized</td>
<td>Comparative</td>
<td>Longitudinal</td>
<td>User-centred and iterative</td>
</tr>
</tbody>
</table>
Goal: Be available where humans cannot be and intervene before issues are exacerbated

Our Vision
- Autonomous wellbeing coach
- Embodied multimodal interactions
- Long-term, personalized HRI

Our Approach
- Iterative design approach
 - Learning from experienced human coaches
 - Face-to-face studies to gather interaction data and design requirements.

Mindfulness Session delivered by Pepper Robot
Teleoperated Robot Coaching for Mindfulness Training

- **Experiment design**

 - 5-week mindfulness training delivered by – human coach (HC) & a teleoperated robot coach (RC)

 Pose, vision and audio pipelines during robot teleoperation

Finalist for RSJ/KROS Distinguished Interdisciplinary Research Award.
Longitudinal Changes in the Session Experience Ratings

- Longitudinal interactions with RC
 - Significant increase in the Robot Motion and Conversation ratings with time

Univariate random-intercept modelling with time as within-subject factor.
Longitudinal Changes in the Session Experience Ratings

Comparing Feelings at the beginning vs. at the end

- Each session promoted significantly positive mood in the participants for both HC and RC.

![Graph showing mean mood ratings over time for HC and RC sessions.](image)

Weeks with significant differences are indicated by *

Findings & Limitations Informing the Next Study

- **In-the-lab** robotic coaching study
- Robotic coach is **not autonomous**
- **High conscientious** people expect the robot to move more naturally
- People **high** along **neuroticism** enjoyed the robot sessions less

- Will robotic wellbeing coaching benefit from **personalization** and **adaptation**?
- What else the potential **users** want?
- What **other wellbeing practices** could the robotic coach deliver?

Participatory Design: Data Gathering

- 8 prospective users
- 3 well-being coaches
 - Mindfulness / Meditation
 - Solution-Focused Practice
 - Life Coaching
- Interviews & focus group discussions
- Rich qualitative data

<table>
<thead>
<tr>
<th>Items</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-discussion survey (in writing)</td>
<td>5 min</td>
</tr>
<tr>
<td>Introduction</td>
<td>3 min</td>
</tr>
<tr>
<td>Warm-up discussion about well-being practices</td>
<td>10 min</td>
</tr>
<tr>
<td>Introduction to social robots and demo videos</td>
<td>7 min</td>
</tr>
<tr>
<td>Ideating robotic well-being coach</td>
<td>15 min</td>
</tr>
<tr>
<td>Discussion on robotic well-being coach features and capabilities</td>
<td>20 min</td>
</tr>
<tr>
<td>Conclusion</td>
<td>2 min</td>
</tr>
<tr>
<td>Post-discussion survey (in writing)</td>
<td>5 min</td>
</tr>
</tbody>
</table>

Results

Thematic Analysis: Results

Robot advantages
- Accessible
- Adaptive and responsive
- Community of users
- Ease of use, low maintenance
- Privacy respected
- Seeing results

Robot disadvantages
- Lack of human-ness
- Privacy issues
- Technology malfunction or other problems
- Unwanted robot behaviour

Robot-led well-being practice
- BSFP
- Coaching practice
- Emotion logging
- Meditation
- Mindfulness
- Other
- SFP

Robot capabilities
- Feedback and evaluation of practice
- Instructing and demonstrating
- Pattern analysis and progress tracking
- Personalization, customization
- Interactive and adaptive responses and conversation

Robot features
- Robot form influencing expectations
- Level of interactivity (coach vs aid)
- Robot environment (practicalities of using robot)

Robot roles
- Peer or friend for wellbeing practice
- Taking care of robot (robot as pet)
- Working alongside human therapist or coach

Robot interaction
- Engagement
- Expressing empathy
- Reminders to practice

Robot environment (practicalities of using robot)
- Robot form
- Robot behaviour
- Robot expressivity

Robot expressivity
- Robot expressivity

User expectations
- Attitudes
- Evidence-based change in opinion
- Neutrality
- Openness or optimism
- Skepticism

Recommendations
- Motivation to keep using robot
- Adaptive and responsive
- Seeing results
- Motivation to start to practice with robot
- Ease of use, low maintenance
- Community of users

Findings Informing the Next Study

- Participants receptive to scientific evidence, more **open to using robot**
- Coaches thought **robot could perform** certain **well-being practices**

P5: “I am always receptive to evidence, if it has been shown to be beneficial I would certainly give it a try, it lessens my skepticism.”

C3: “… [the robot] could give the person the sense [that] someone is there for you, present.”

Mean and standard errors of participant ratings on attitudes towards a robotic coach pre and post focus group.
Towards Autonomous & Adaptive Robotic Wellbeing Coach

Interact and adapt.

Extend learning with other users.

Adapt to different user demographics.

(b) https://www.scmp.com/lifestyle/health-wellness/article/3024028/how-robot-nurses-could-help-care-worlds-elderly-and

Traditional vs. Continual Learning

Traditional
- Models trained in isolation on benchmark datasets.
- Large datasets enable generalisation across contexts.
- Training data might be very different from application scenarios.
- Generalisation comes at the cost of learning individual differences.
- Cumbersome to retrain and update models.

Continual Learning
- Agents acquire and integrate knowledge incrementally about changing environments.
- Data only made available sequentially.
- Highly sensitive towards changing data conditions.
- Adaptations in learning to avoid forgetting.

CL Problem Formulation:

\[A_i^{CL} : \langle h_{i-1}, Tr_i, M_{i-1}, t_i \rangle \rightarrow \langle h_i, M_i \rangle \]

Traditional vs. Continual Learning

Generalisation for facial expression recognition

![Generalisation Images](image-a)

Personalisation to learn individual expressions

![Personalisation Images](image-b)
Continual Learning for Affective and Wellbeing Robotics

Continual Learning for Arousal-Valence Prediction

Automatic Speech Recognition (ASR)

Dialogue Manager

Interaction	Q1	Q2	Q3	Q4
I think you are doing great. | | | | |
That sounds really reassuring. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
I think you are doing great. | | | | |
That sounds really reassuring. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
It sounds like you are doing well. | | | | |
I feel sorry. | | | | |
Sounds like a positive encouragement. | | | | |
Thank you for sharing this. | | | | |
It sounds like you are doing well. | | | | |
Continual Learning in Action: Wellbeing Coaching

- Positive psychology exercises
 - 2 impactful things in their lives in the recent past
 - 2 things that they felt grateful for in the recent past
 - 2 recent accomplishments in the recent past

- Conditions
 - C1 - Static and Scripted Interaction
 - C2 - Affect-based Adaptation without Personalisation
 - C3 - Affect-based Adaptation with Continual Personalisation
Results

Scores for C1, C2, and C3 conditions.

* represents $p < 0.05$ and ** represents $p < 0.01$.

(a) GODSPEED Scores.

(b) RoSAS Scores.

Customised Question Scores under C1, C2, and C3 conditions.
Findings & Limitations Informing the Next Study

- **In-the-lab** robotic coaching

- Robotic coach **lacks** in **speech** capabilities (understanding / generation)

- A **unimodal** affect **perception** model be **insufficient**
 - explore multimodal perception to better assess participants’ (affective) responses

- Continual Learning in action comes with **challenges**
Continual Learning: Challenges & Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Why is this important and needed?</th>
<th>How can this be achieved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquire person-specific data</td>
<td>Adapting learning models to individual preferences requires large amounts of data that can only be sourced through interactions with users.</td>
<td>(1) Conduct introductory HRI rounds to enable the robot to collect additional data about the user. (2) Leverage adversarial learning to train a generative model to simulate additional person-specific data.</td>
</tr>
<tr>
<td>Obtain normative baselines</td>
<td>The robot needs to know the behavioural norm for each user against which deviations can be observed. Deviations help identify shifts in user socio-emotional behaviours and infer changes in interaction context.</td>
<td>(1) Conduct interactions under contextually inert (neutral) situations during introduction rounds. (2) Use the (subtle) deviations from this baseline, given the interaction context, to analyse shifts.</td>
</tr>
<tr>
<td>Extract semantic associations</td>
<td>Adapting the learning for a large number of users is computationally intractable. Learning models will get saturated, not able to remember previous information or learn with new individuals.</td>
<td>(1) Form user groupings, using person-specific attributes (C_u in Eq. 2-3) to learn group-based adaptations. (2) Use unsupervised data clustering to facilitate learning semantic groupings of users.</td>
</tr>
<tr>
<td>Learn contextual affordances</td>
<td>Interactions are driven by context and humans switch between contexts without clear boundaries. Contextual attributes may not always be implicit and need to be learnt separately</td>
<td>(1) Learn context-aware embeddings to distinguish between task boundaries. (2) Use contextual affordances (e.g. T_i in Eq. 3) to facilitate smooth switching between affective HRI contexts.</td>
</tr>
<tr>
<td>Balance memory with computation</td>
<td>The memory-computation trade-off needs to be considered w.r.t the application domain. Adding more memory facilitates rehearsal of past knowledge, while additional computation power improves adaptation to novel experiences.</td>
<td>(1) Use generative models for pseudo-rehearsal to reduce model's memory foot-print. (2) Offload part of the computation/memory load to RaaS-based solutions to balance old vs. novel learning.</td>
</tr>
<tr>
<td>Allow controlled forgetting</td>
<td>When learning is continuous, redundant information in the memory/model is not released, hindering learning capacity of the model.</td>
<td>(1) Utilise forgetting mechanisms (inspired by biological organisms) on unused memory locations or parts of the model, to learn new knowledge.</td>
</tr>
<tr>
<td>Use multiple performance metrics</td>
<td>Benchmark evaluations from conventional ML and CL perspectives are needed for reproducibility and fairness guarantees, and to evaluate model's robustness to dynamic shifts in data distributions.</td>
<td>(1) Report CL performance metrics (Section II-E), along with the classification metrics of F-measure and AUC-ROC scores or reward-function dynamics for behaviour learning.</td>
</tr>
</tbody>
</table>

Findings & Limitations Informing the Next Study

- **In-the-lab** robotic coaching study

- Robotic coach **lacks** in **speech** capabilities (understanding / generation)

- A **unimodal** affect **perception** model be **insufficient**
 - explore multimodal perception to better assess participants’ (affective) responses

- Continual Learning in action comes with **challenges**

- Investigate **longitudinal interactions** over time
 - to determine whether the **effects hold** (long-term HRI)
Robotic Mental Well-being Coaches in the Workplace

- Research questions

Robotic Mental Well-being Coaches in the Workplace

- Research questions

RQ1
How does the robot form influence coachees’ perceptions of the robotic coach in the workplace?
Robotic Mental Well-being Coaches in the Workplace

- Research questions

RQ2
How do employees perceive the robotic coach's personality, and do the perceptions differ due to form?
Robotic Mental Well-being Coaches in the Workplace

- Research questions

RQ3
How do the perceptions of the coachee-coach alliance (working alliance) differ across the two forms?
Robotic Mental Well-being Coaches in the Workplace

Robotic Mental Well-being Coaches in the Workplace

- **Robot Personality**

 Robotic mental well-being coach personality:
 - High Openness – O
 - High Conscientiousness – C
 - Medium Extraversion – E
 - Medium/High Agreeableness – A
 - Low Neuroticism – N

Target Robot Personality
Robotic Mental Well-being Coaches in the Workplace

Results: Perception of the robots as a wellbeing coach (RQ1)

- The Misty (M) robot was perceived more positively than the QTrobot (QT).
- RoSAS competence, RoSAS warmth, RoSAS discomfort.
- "need to be a conversation partner first" (QT)
- Robot made them feel "a lot more engaged" in comparison to doing the exercise on their own (M)

The Misty (M) robot was perceived more positively than the QTrobot (QT).
Robotic Mental Well-being Coaches in the Workplace

Results: Robot personality (RQ2)

- “the robot doesn’t have any personality” *(QT)*
- “empathetic”, “caring”, “more introvert than extrovert”, “warm”, “calm” or “calming” and “relaxed” *(M)*

Coachees perceived M’s voice, gestures, and personality more positively, while coaches were more critical of the QT and many noted that it did not have a personality.

Target vs. Perceived Personality of M and QT coachees
Robotic Mental Well-being Coaches in the Workplace

Results: Coach-coachee alliance (RQ3)

> “[the correct timing] built up my connection with the robot, and then it went and destroyed all its hard work by [talking] in the wrong places” (QT)

> “there’s a little emotional connection going”, “I do feel an affinity with her” (M).

Coachees developed a stronger alliance with Misty robot (M) than with the QTrobot delivering well-being exercises.
Findings & Limitations Informing the Next Study

- Robotic coach form / embodiment matters
 - Impacting perception of behaviours and personality

- The coach-coachee alliance is essential for successful coaching
 - but is negatively impacted by interaction ruptures
Interaction Ruptures in Robotic Wellbeing Coaching

- **Data annotation**
 - **User awkwardness** (e.g., participants may look confused, uncertain, distressed or uncomfortable)
 - **Robot mistake** (e.g., interrupting the coachee, not responding to the coachee)
 - **Interaction rupture**: either the presence of user awkwardness or a robot mistake, or both

Longitudinal Evolution of Behavioural Cues

- Change of behaviour
- Longer speech length
- Less intense "confused" expression

Interaction Ruptures in Robotic Positive Psychology Coaching

Examples of interaction ruptures

Additional Limitations & Revised Objectives

L1) Negative perceptions about the robotic coach

L2) No longitudinal personalisation

L3) Occurrence of interaction ruptures

L4) Limited conversational capabilities

L5) No significant mental well-being improvement

O1) Interactive and responsive robotic coach

O2) Adaptive robotic coach over time

O3) Interaction rupture detection & repair

O4) LLM integration in the robotic coach

O5) Significant improvement of mental well-being

The VITA System

VITA system includes sensor, detector, actuator, dialogue and decision modules using the open-source framework HARMONI

Code: https://github.com/Cambridge-AFAR/VITA-system
Components of the VITA System

Reinforcement Learning Pipeline

- Generic pre-trained model using a dataset we collected in our lab
 - 1 well-being coach delivered 4 positive psychology exercises with 5 researchers

- Online adaptive RL:
 - 3 actions
 - 11-element observation space
 - Reward (facial valence and speech duration)

Evaluation of VITA

- **In the lab pilot study**: 4 researchers, robotic coach delivers 4 positive psychology exercises in 3 conditions each
 - Pre-scripted (Fig.a)
 - Generic RL (Fig.b)
 - Adaptive RL

- **Real-world study**: 17 employees from a tech company interacted with a robotic coach with the adaptive RL embedded over 4 weeks (Fig.c)

Key Findings

- Coachees perceived the VITA adaptive and generic configurations more positively than the pre-scripted one
 - felt understood and heard by the adaptive robotic coach
- VITA adaptive robotic coach kept learning successfully by personalising to each coachee
 - did not detect interaction ruptures
- Coachees had significant mental well-being improvements
- The VITA system is open-source and available on Github

What Next? Iterative Design of Repair Strategies (sneak peek)

- Problem: Closer inspection revealed **subtle interaction ruptures**
- Solution: Iterative **design of repair strategies**

Key Takeaways (1)

- **Human expert** involvement and guidance matters
- **Iterative user-centred design** is crucial for user acceptance and **success**
- Use and engagement beyond the novelty effect requires **longitudinal HRI**
- Deployment in the **real world** provides **real insights** for improvement
- **Users’** perceptions of the robot and its behaviours **evolve over time**
Key Takeaways (2)

- One size does not fit all
 - Robot embodiment, personality, expressivity and speech are inter-related and need to be considered together for the specific application context
 - LLMs are powerful for enhancing the speech processing and generation capabilities of robots, but they need ‘policing’
 - Even within the same user group there is variation → robot learning and adaptation is essential
Human-Robot Interaction for Wellbeing
Applications in the Real World

Full-day hybrid workshop on August 28th, 2023 as part of the IEEE International Conference on Robot & Human Interactive Communication (RO-MAN 2023)

The main topic of our workshop will be robotic applications for wellbeing in the real world, which is strongly in line with the RO-MAN 2023 theme of "Design a New Bridge for H-R-I", which seeks to address the challenges of developing intelligent robots for human health. Robots are becoming more prevalent in our society for task-oriented goals (e.g., cleaning the house, cooking a meal) and social-oriented interactions such as companionship, assistance, and coaching. We expect robots to share our daily lives in our homes, workplaces, and public spaces.
International Journal of Social Robotics
Special Issue: “Embodied Agents for Wellbeing”

Call for Papers: https://www.springer.com/journal/12369/updates/20296154

Guest Editors:

Micol Spitale, University of Cambridge
Katie Winkle, Uppsala University
Emilia Barakova, Eindhoven University of Technology
Hatice Gunes, University of Cambridge