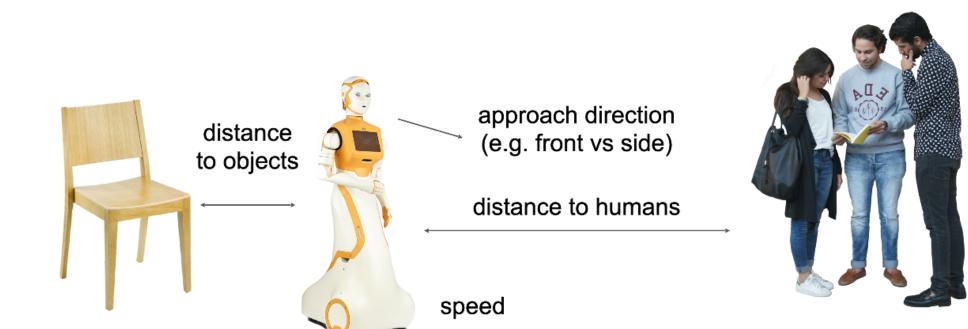


PREFERENCE-BASED LEARNING FOR SOCIAL ROBOTICS

Anand Ballou, Chris Reinke, Xavi Alameda-Pineda Centre Inria de l'Université Grenoble Alpes, Grenoble, France

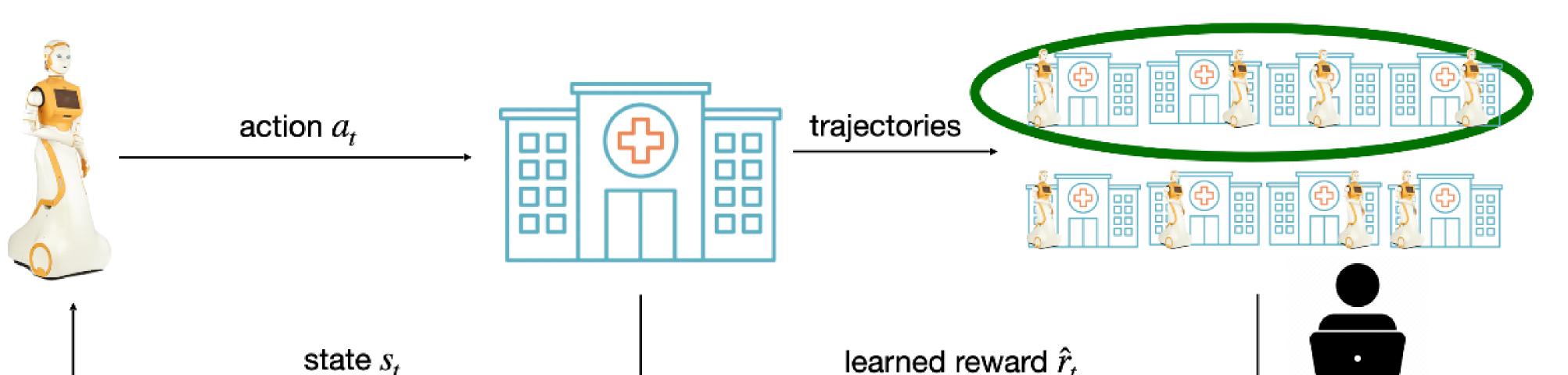
Motivation

We address the problem of behavior generation in a social context. We want our robot to handle different scenarios such as group navigation, under various conditions with different success metrics.



Preference based Learning

- Add human feedback into the agent learning loop
- Teach agent by expressing preferences about its behaviour

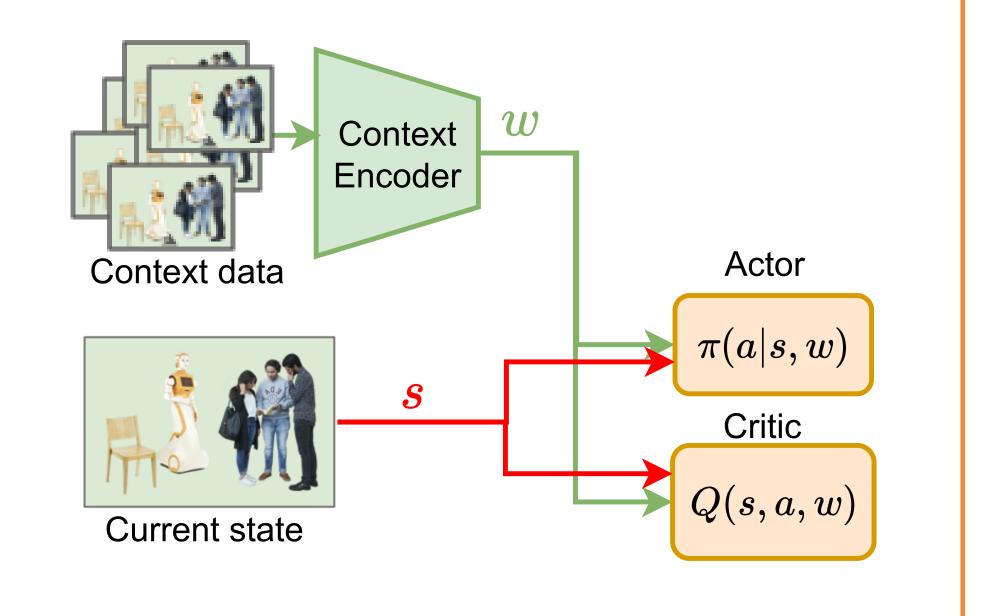


Contribution

A two-step approach, which separates policy training from feedback aggregation, is features agnostic and requires little feedback.

Phase 1: Meta-RL

- A stochastic encoder (VAE) is learned during the training process
- Train by adapting to different tasks with random reward function
- Then search for the most fitting policy in the latent space learned by the VAE

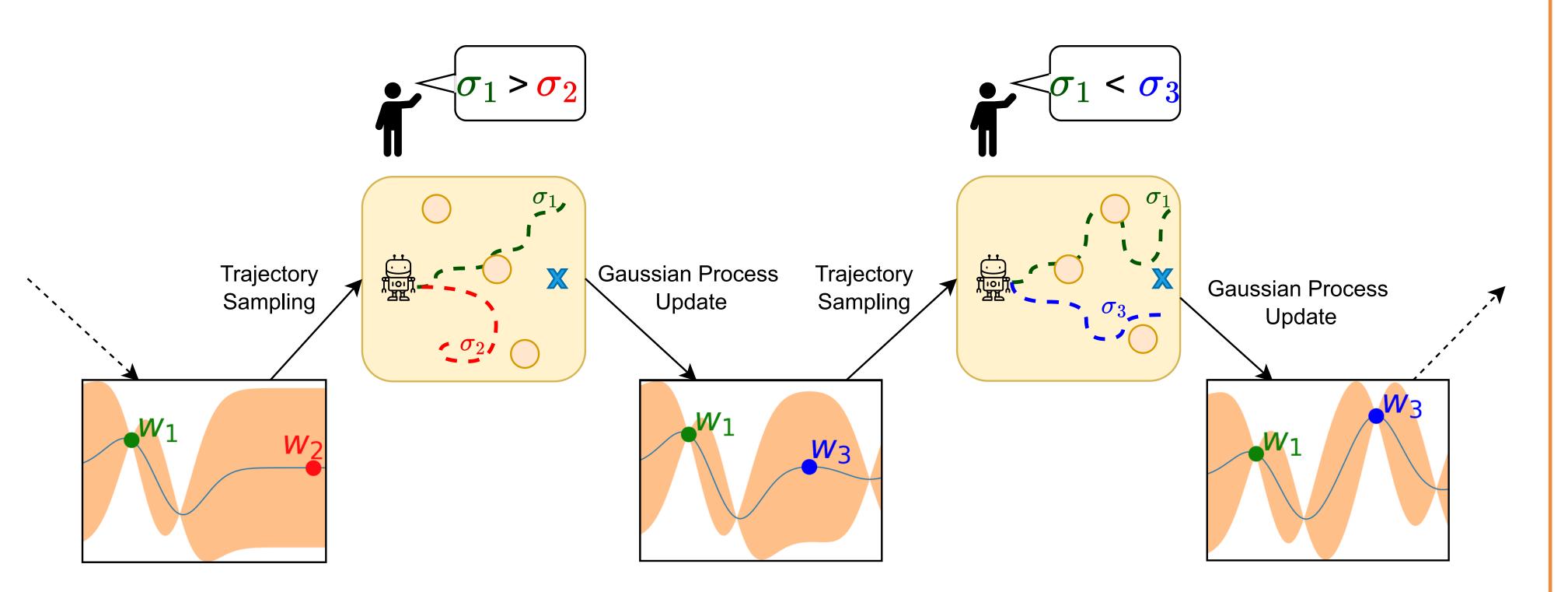


Two drawbacks:

- Requires availability of human at all time
- Requires a high number of feedback or dependent on reward features

Phase 2: Bayesian Optimisation

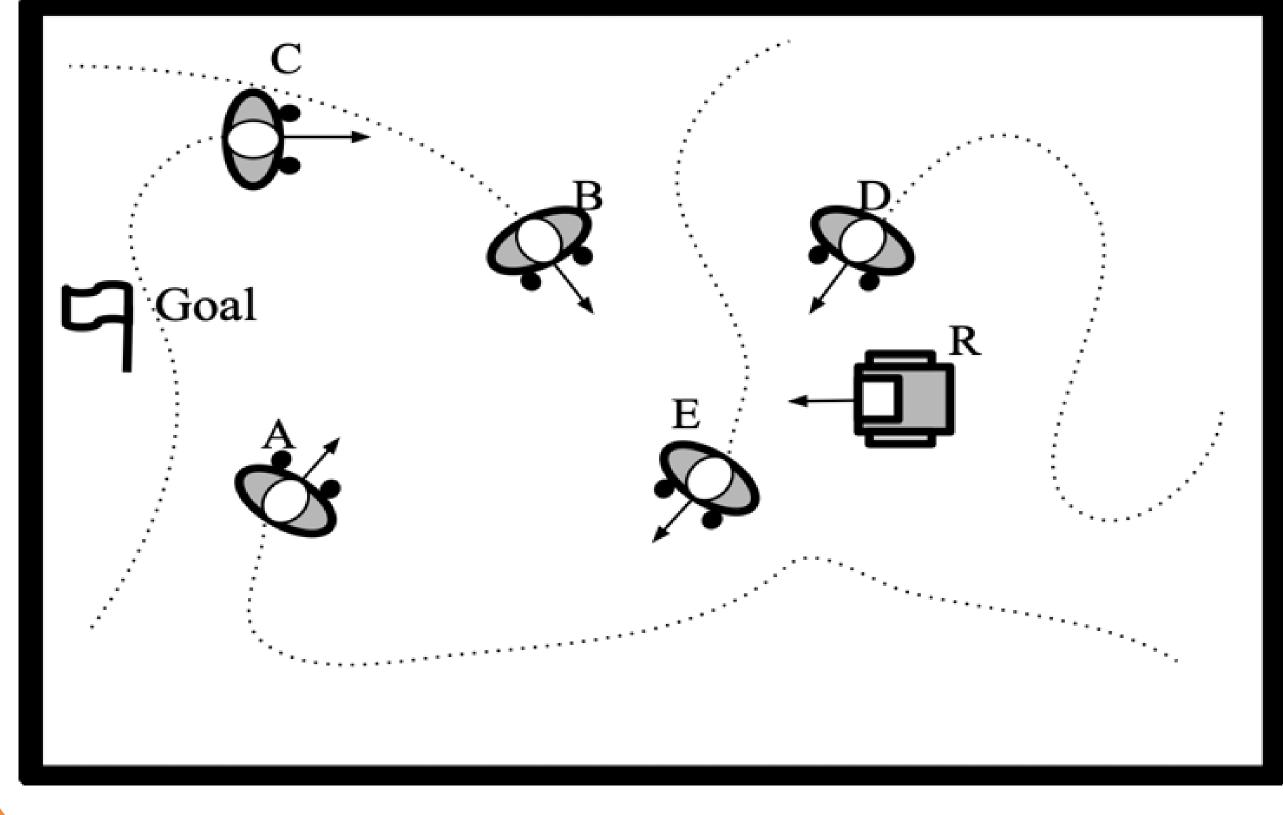
A Bayesian optimization approach is used to select the best policy:



- Sample two policies
- Ask for user's preferences
- Update estimate of our utility function

Experiments

Benchmark on a social navigation environment showing more robust performances with missing reward features and outperforms reward model-based methods in terms of feedback efficiency



Method	No Goal	No Collision	No Social	No Approach	No Speed	Full			
Oracle	-31 ± 15								
V-P-BARL		-51 ± 13							
M-P-BARL	-58 ± 16	-48 ± 12	-98 ± 23	-123 ± 40	-175 ± 35	-48 ± 16			
Gradient P-BL	-53 ± 8	-53 ± 14	-77 ± 20	-93 ± 21	-145 ± 51	-41 ± 13			
Bayesian P-BL	-54 ± 10	-46 ± 13	-105 ± 13	-143 ± 31	-188 ± 43	-38 ± 14			

ated reward over different configuration of the environmen

(**M**)ultimed

)ntelligence

A)rtificial

R)obotics

Method	No Goal	No Collision	No Social	No Approach	No Speed	Full			
V-P-BARL			15 ± 2						
M-P-BARL	18 ± 5	11 ± 4	16 ± 6	9 ± 5	8 ± 6	13 ± 3			
Gradient P-BL	73 ± 15	54 ± 10	47 ± 17	53 ± 15	34 ± 11	67 ± 10			
Bayesian P-BL	68 ± 12	56 ± 9	49 ± 8	45 ± 12	30 ± 12	56 ± 8			
Number of feedback necessary to reach best performances									

Number of recuback necessary to reach best benormalices

Summary and Outlook

Investigate the use and limitations of our proposed approach. It presents several advantages:

- No training during feedback collection
- Less feedback required
- Better performances when reward features are ill-defined

Contact information

mail: anand.ballou@inria.fr team website: team.inria.fr/robotlearn/