
DELIVERABLE D6.1

GRANT AGREEMENT N. 871245

Deliverable D7.3
Initial Software Architecture for SPRING-ARI

Due Date: 31/08/2021
Main Author: Sara Cooper
Contributors: Séverin Lemaignan, Anaël Le Bihan, Luca Marchionni
Dissemination: Public Deliverable

This project has received funding
from the European Union's Horizon
2020 Research and Innovation



Programme under Grant Agreement No. 871245.

DOCUMENT FACTSHEET

Deliverable no. Annex to D7.3: Initial Software Architecture for SPRING-ARI
Responsible Partner PAL
Work Package WP7: WP Robot Customisation and Software Integration
Task T7.3:  Preliminary Software Integration Cycle
Version & Date V4, 29/06/2022
Dissemination level [  X ] PU (public)  [   ] CO (confidential)

CONTRIBUTORS AND HISTORY

Version Editor Date Change Log
1 PAL 06/08/2021 First Draft
2 PAL 07/09/2021 Partner contributions added
3 PAL 07/06/2022 Revision based on Reviewers feedback
4 PAL 29/06/2022 Revision after external reviewers request

APPROVALS

Authors/editors PAL: Sara Cooper, Luca Marchionni, Séverin Lemaignan
Task Leader PAL
WP Leader PAL

DX.X Deliverable Name VX |                                                                                 |Page 2



TABLE OF CONTENTS
Executive Summary 6

Contents of Deliverable 7

1.SPRING-ARI General Architecture 7

ARI Robot Software Architecture 7

1. Mapping, localization and autonomous navigation 9

2. Perception 10

3. Low-level control system 11

4. Text to speech 12

5. Face Recognition 12

6. Speech Recognition 13

2.SPRING-ARI Modules and API 14

WP1 (ERM): Experimental Validation 15

WP2 (CVUT): Environment Mapping, Self-Localisation and Simulation 15

WP3 (BIU): Robot audio-visual perception of humans 18

WP4 (UNITN): Multi-Modal Human Behaviour Understanding 21

WP5 (HWU): Multi-User Spoken Conversations with Robots 27

WP6 (INRIA): Learning Robot Behaviour 29

WP7 (PAL): Robot Customization and Software Integration 32

4. Quality Assurance 34

Gitlab 34

Software Integration Guidelines 35

Unit Testing 37

Continuous Integration 37

Dockers 38

5.Conclusions 40

SPRING-ARI ROS API 40

WP2 40

WP4 43

WP5 46

DX.X Deliverable Name VX |                                                                                 |Page 3



WP6 48

Docker updates 49

DX.X Deliverable Name VX |                                                                                 |Page 4



EXECUTIVE SUMMARY

Deliverable 7.3 concludes Task 7.3 on preliminary software integration cycle. The goal of this
task is to perform the preliminary integration cycle that corresponds to T1.3, providing a basic
system with the first development stage of all building blocks.

The document will explain:
● SPRING-ARI robot brief software architecture
● Preliminary SPRING-ARI API and modules, highlighting current status
● Coding and integration guidelines, indicating the SPRING Gitlab repository, provided

dockers, documentation, etc.
● Continuous integration system and unit tests procedures

DX.X Deliverable Name VX |                                                                                 |Page 5



CONTENTS OF DELIVERABLE

The aim of this deliverable is to provide a first version of the software architecture of the
SPRING-ARI Robot, considering the user-cases defined as part of WP1, and the modules
being developed between WP2 to WP6.

Specifically, PAL has:

● Provided coding and integration guidelines to partners, specifically regarding the ISO
of the robotic platform

● Set up and maintain a continuous integration system, as well as develop software
tools to automate as much as possible the software integration

● Coordinated and supervised the initial integration cycle

The other partners of the consortium have integrated their respective modules and
applications.

To this end, this report is a high-level description of the main modules of the SPRING-ARI
robot, and refers to the associated source code repository where the work has been carried
out. This task is followed by Task 7.4 and Task 7.5, which aim to achieve an intermediate and
complete software integration of the system, respectively.

The document is structured as follows. In Section 1 the General Architecture of the
SPRING-ARI Robot, Section 2 the SPRING-ARI Modules and API. In Section 3 the quality
assurance of the software will be highlighted, including the software and continuous
integration system.
Finally, conclusions are presented in Section 4.

1.SPRING-ARI GENERAL ARCHITECTURE

The SPRING-ARI robot has a component-based architecture that instantiates the robotic
application by encapsulating different functionalities. Before explaining the different
modules, the core software architecture of ARI will be outlined.

ARI Robot Software Architecture

The software architecture of the onboard computer of ARI has been designed in order to
accommodate:

DX.X Deliverable Name VX |                                                                                 |Page 6



● Third party OS, middlewares and software packages
● PAL proprietary software and ROS packages
● Developer software and ROS packages

Figure 1 presents the software that is installed out-of-the-box in the robot.

Figure 1: Off-the-shelf software of the robot

All the software referred to in Figure 1  is read-only protected in the SSD of the onboard
computer of the robot in order to prevent corruption of the core system. More precisely, any
change done in the system out of the /home/pal folder will not be persistent after a computer
reboot. Nevertheless, a procedure is provided in order to do system modifications in a
persistent way so that partners will be able to install their own software packages.

Regarding the ROS software packages, three levels are defined in the robot computer, which
are shown in Figure 2.

Figure 2: ROS software in the robot

DX.X Deliverable Name VX |                                                                                 |Page 7



Next a brief description of some of the most relevant ARI components are described, on top
of which the SPRING-ARI software modules are developed. For more details please refer to
the ARI Robot Manual, shared with all partners as part of D7.2:
http://docs.pal-robotics.com/manuals/0.0.x/manuals/ari/lang/en_GB/index_ari_manual.html,
or the ARI training videos accessible as part of SPRING-ARI robot training:
https://youtu.be/2QlUOMy6nPk

1. Mapping, localization and autonomous navigation

ARI  is provided with a customised ROS navigation stack, where it uses its front torso RGB-D
camera to map the environment using Visual SLAM. Once a map is built, it navigates
autonomously using particle-filter based localization and motion planning, that considers
dynamic obstacles detected. This is relevant mainly for WP2 modules. Fig 3 shows the
navigation architecture of the ARI robot:

Figure 3: ARI Robot Navigation architecture using ROS

As can be seen, the user can communicate with the navigation software using ROS
(Robotics Operating System: http://wiki.ros.org/) actions and services.

In order to visualise the mapping and localization pipeline using Rviz, ROS visual interface,
the ARI robot has a customised Rviz interface. With this it is possible to build and localise
within a map using ORB SLAM (https://github.com/raulmur/ORB_SLAM2), and then send
navigation goals. Advanced options are offered such as creating Points of Interests for the
robot to move to, Virtual Obstacles e.g. areas to avoid, etc. (Figure 4).

DX.X Deliverable Name VX |                                                                                 |Page 8

http://docs.pal-robotics.com/manuals/0.0.x/manuals/ari/lang/en_GB/index_ari_manual.html
https://youtu.be/2QlUOMy6nPk
http://wiki.ros.org/
https://github.com/raulmur/ORB_SLAM2


Figure 4: ARI Robot Navigation Rviz Map Editor

2. Perception

The cameras of the SPRING-ARI robot are described in D7.2. Figure 5 illustrates some of
the camera outputs of the robot, such as the front RGB-D camera of the torso, its pointcloud,
and the back fisheye camera. This section is relevant for WP2, WP3, WP4, WP5 and WP6
modules involving perception.

Figure 5: SPRING-ARI Robot camera outputs

DX.X Deliverable Name VX |                                                                                 |Page 9



3. Low-level control system

The SPRING-ARI has 14 degrees of freedom, including 4 joints in each arm, 1 in each hand,
2 in the head, and 2 for the base. For their control it makes use of ros_control
(http://wiki.ros.org/ros_control)

In total, the controllers that can be moved are:

● arm_left_controller: 4 joints
● arm_right_controller: 4 joints
● hand_left_controller: 1 joint
● hand_right_controller: 1 joint
● head_controller: 2 joints

For instance, Figure 6 shows how the joint_trajectory_controller package can be used to
control the head position,  an open source ROS package that takes as input joint space
trajectories and executes them.

Figure 6: Publishing head positions to the head_controller using the joint_trajectory_controller

Additionally the arm controller provides a safe version, which performs self collision check
before executing each trajectory increasing safety of the robot motions.

Additionally, for non-verbal behaviour generation such as producing new movements for the
arms, for instance useful for modules developed in WP6, ARI comes with the
play_motion_builder package that allows to create new motions that the play_motion
package can then execute. Some available gestures it can do right now include waving,
shaking hands, or bowing the head.

DX.X Deliverable Name VX |                                                                                 |Page 10



Figure 7: Play motion package to play pre defined motions

4. Text to speech

The ARI robot uses ACAPELA (https://www.acapela-group.com/) to produce speech, with
the option to install any of its available voices. In order to trigger it a ROS Action server is
available named /tts. Figure below shows an example of how to send action goal to the
server to make the robot talk saying the sentence “Hello world” in English:

rostopic pub /tts/goal pal_interaction_msgs/TtsActionGoal "header:
seq: 0
stamp:
secs: 0
nsecs: 0
frame_id: ''
goal_id:
stamp:

secs: 0
nsecs: 0

id: ''
goal:
text:

rawtext:
text: 'Hello world'
lang_id: 'en_GB
speakerName: ''

wait_before_speaking: 0.0"

5. Face Recognition

Face and emotion recognition are implemented on top of the Verilook Face SDK provided by
Neurotechnolgy.

DX.X Deliverable Name VX |                                                                                 |Page 11

https://www.acapela-group.com/


The ROS package implementing facial perception subscribes to
/head_front_camera/image_raw image and processes this topic at 3 Hz in order to provide
the following information:

● Multiple face detection
● 3D position estimation
● Gender classification with confidence estimation
● Face recognition with matching confidence
● Facial attributes: eye position and expression
● Emotion confidences for six basic emotions

As part of SPRING, in WP4, face perception modules will be developed and therefore will
replace the existing module of the robot, endowing it with advanced abilities such as mask
detection and gaze detection.

6. Speech Recognition

The ARI robot uses Google Cloud Speech API to process speech and extract text and
keywords in many languages supported by the Google cloud service. The recognized text
can then be used for activating functionalities or answer questions asked by the robot. As
part of the SPRING project, WP3 will provide a new speech recognizer that will enhance
speech recognition capabilities of ARI.

DX.X Deliverable Name VX |                                                                                 |Page 12



2.SPRING-ARI MODULES AND API
This chapter describes the preliminary SPRING modules that will be developed as part of
WP1 to WP7, including their inputs/outputs to ensure suitable integration with ARI Robot’s
architecture and requirements of associated modules. Note it is a working version that will be
updated in D7.4 and D7.5.

Figure 8 outlines the general draft of the different modules and their association to their
respective packages.

Figure 8: Relational diagram of software modules

The following table specifically summarises the breakdown of ROS nodes per work package:

WORK PACKAGE SOFTWARE MODULES

WP1 - Experimental validation
(lead: ERM)

● user input via the tablet
● non-user application input

WP2 - Environment Mapping,
Self-Localisation and Simulation
(lead: CVUT)

● monocular object localisation
● multi-view object localisation
● visual self-localisation

DX.X Deliverable Name VX |                                                                                 |Page 13



● SLAM
● 2D occupancy map

WP3 - Robot audio-visual perception of
humans
(lead: BIU, with INRIA contribution)

● multi-body tracker
● people’s state fusion
● speech diarisation and separation
● sound source localisation
● ASR
● speaker recognition

WP4 - Multi-Modal Human Behaviour
Understanding
(lead: UNITN)

● body pose estimation
● biometrics (id, age, gender)
● activity recognition
● user gaze estimation
● user attention estimation
● group estimation (f-formations)
● user expression recognition

WP5 - Multi-User Spoken Conversations
with Robots
(lead: HWU)

● multi-party ASR
● dialogue manager
● robot verbal utterance generation
● high-level robot social state
● high-level task planning

WP6 - Learning Robot Behaviour
(lead: INRIA)

● robot navigation
● robot non-verbal behaviours

generation
● robot high-level action state

WP7 - Robot Customization and Software
Integration
(lead: PAL)

● low-level input/output robot drivers
● standard ROS messages
● overall architecture integration

Next each module will be briefly described, including their inputs and outputs, followed by
ROS based SPRING API. Note that some are better defined than others and will be
continuously updated. The input and outputs of each modules have been translated to ROS
msgs, actions and services, with a preliminary version stored inside spring_msgs
metapackage (https://gitlab.inria.fr/spring/wp7_ari/spring_msgs) and available to all partners.
Thanks to this duplication of msgs is avoided and it is ensured additional ones are added
easily. Some of these are available in the Appendix.

WP1 (ERM): Experimental Validation

2 main modules are subdivided in order to suitably collect and manage data during
experiments (T1.2), collect user feedback and validate the technology (T1.3, T1.4, T1.5).

Due to their dependency on other WP modules, its more specific API will be defined as part of
D7.4.

DX.X Deliverable Name VX |                                                                                 |Page 14

https://gitlab.inria.fr/spring/wp7_ari/spring_msgs


1. User-related signals (coming from the tablet).
2. Application-related signals (coming from the evolution of the application).

(Priority High (3) → Low (1))
API Name Handler Description Prior.

User signal
(ERM)

Robot Application Input from the user through the tablet, handled by the "Robot
Application.” An example could be:
“user-signal”: {“user1”: ["start explanation”]}

1

Application signal
(ERM)

Robot Application Input from the robot application not triggered by a user.
Example: “application -signal”: {“user1”: ["explanation ended”]}

1

WP2 (CVUT): Environment Mapping, Self-Localisation and Simulation

The modules under this WP2 are aimed to develop models, representations and learning
algorithms for building and updating a map from the environment, and simulating audio-visual
data according to the semantic and behavioural patterns of it. Specifically including:

1. The Visual Robot localization module, that performs robot self-localisation from vision
T2.1

2. An audio-visual data simulator providing training data for machine learning T2.2
3. The Visual Semantics Module, that achieves language-driven robot self-localisation

T2.3
4. Online Map Update Module, to update current map of the environment with

behavioural and semantic information T2.4

(Priority High (3) → Low (1))

API Name Handler Description Prior. Status

DX.X Deliverable Name VX |                                                                                 |Page 15



Object
Localizatio

n
(CVUT)
with a
single

camera

Visual
Semantics

Visually detected objects: class and localisation and size
in the image.

Use: this module would run only upon demand. Two
examples:

● the robot wants to self-localise,
● when the dialogue module requires to detect

objects.

Input:

● Rectified RGB-D image front fish-eye:
[/torso_front_camera/depth/image_rect_raw]
sensor_msgs/CompressedImage
OR
RGB image from head camera:

[/head_front_camera/image_raw/compressed]
● Camera info (size, calibration, etc).

/torso_front_camera/depth/camera_info
[sensor_msgs/CameraInfo]

OR

/head_front_camera/camera_info
[sensor_msgs/CameraInfo]

Output [once per object detected]:

● object_class [string]
● confidence [float]
● 6D position/pose of object w.r.t. camera ->

geometry_msgs/PoseStamped.msg

● 3D bounding box (example ROS msgs:
sensor_msgs/RegionOfInterest bounding_box)

uint32 x_offset
uint32 y_offset
uint32 height
uint32 width
bool do_rectify

2 The module is still in
development phase

Object
Localizatio

n
(CVUT)

with
multiple
camera

Visual
Semantics

In addition to the definition/input/output of the previous
module, additional needs are:

Input:

● Images from all cameras.
● Transformation between cameras [provided by

the ROS TF library: http://wiki.ros.org/tf].

2 Not started

DX.X Deliverable Name VX |                                                                                 |Page 16



Visual
robot

self-localiz
ation

(CVUT)

Robot
Localizatio

n

Instantaneous position/orientation of the robot in the 2D
map.

Input:

● torso RGB-D camera image
[/torso_front_camera/depth/image_rect_raw]

● back RGB-D camera image

Output:

● Instantaneous position/orientation of the robot
(6D) geometry_msgs/PoseStamped.msg

● To be fused (?) with current topic that ORB
SLAM is publishing localisation information:
/loc_orb/pose
[geometry_msgs/PoseWithCovarianceSt
amped]

● Confidence (face for the time being). Float

3 The module is available as a
client server with pythonic
ROS client which sends a

query image to
server/workstation where it
is processed and reads the
output. But it hasn't been

tested with ARI yet

Map &
Updates
(CVUT)

Map Environment map and any map updates.

Input:

● Instantaneous position/orientation of the robot
(6D). From Visual Robot Self-localization
module.  Topic. /loc_orb/pose
[geometry_msgs/PoseWithCovarianceSt
amped]

● 6D position/pose of object w.r.t. camera [given
by TF package] -> tf change between /object
TF location and /torso_front_camera/
OR

● 6D position/pose of object w.r.t. world (for
experimental purposes of CVUT)[given by TF
package]. TF change between /object TF
location and /world

Output
(http://docs.ros.org/en/melodic/api/nav_msgs/html/msg/O
ccupancyGrid.html):

● current map (inloc format?)
● coarse 3D point cloud
● floor plan
● some visual panoramas

2 The module is still in
development phase

DX.X Deliverable Name VX |                                                                                 |Page 17



2D
occupancy

map

Map Occupancy of the environment map

Input:

● map [from Map & Updates API] projected to
2D ground

● Obstacle detection/avoidance from ARI (where
are the obstacles around ARI in the ground
floor).

● /map [nav_msgs/OccupancyGrid] or
/move_base/local_costmap/costmap
[nav_msgs/OccupancyGrid] with
indicated obstacles

● People’s position in the ground floor (WP3)

Output:

● occupancy grid map
[nav_msgs/OccupancyGrid]-> e.g. right now
ORB SLAM publishes on topic /map, with map
information in topic /map_metadata

1 Module not started yet

WP3 (BIU): Robot audio-visual perception of humans

It aims to provide two main modules:
1. Multi-Person Tracking module, that uses auditory and visual raw data to detect,

localise and track multiple speakers (T3.1)
2. Diarisation & Separation and the speech Recognition modules, extracting the desired

speaker(s) from a speech dynamic mixture and recognising the speech utterances
from the separated sources, for a static (T3.2) and a moving (T3.3) robot

How to acquire audio suitably from the ARI robot is one of the matters under discussion.

API Name Handler Description Prior. Status

DX.X Deliverable Name VX |                                                                                 |Page 18



People
position
(INRIA)

Visual
Person

Tracking

Position (2D/3D) of people in the
environment, and their velocity.

Input:

● RGB camera images (front
torso and back torso (?)):
[/front_camera/fisheye/image_r
aw/compressed] and
[/rear_camera/fisheye/image_r
aw/compressed]

● Depth images
[/torso_front_camera/depth/col
or/points]

● Robot position within the map
(WP2)

Output [for each tracked person]

● Header (with timestamp and
the frame of reference of the
detection)

● tracking ID [string/int]
● 3D position

[geometry_msgs/Point]
● 3D velocity

[geometry_msgs/Point]
● 2D bounding box [——]
● visual representation (re-ID)
● confidence [float]
● last update [float] (-1 if never

seen, 0 if visible, else last time
seen)

See below msgs: TrackedPerson2d.msg

3 The module has
been tested initially
using RGB images
captured by a  USB

Realsense D435
camera connected to

a Jetson TX2
module and
wirelessly

transmitted to a
Laptop for

processing. Tests
were performed

directly from Linux
and also within ROS.
With ARI,  tracking
was tested at their
office on its front

RGB fisheye camera
and on the two

fisheye cameras
from the rear

Realsense T265.
Processing of

wireless-transmitted
images was carried

out on a laptop.

People’s
state

(INRIA)

Audio-Visua
l Person

Description

Fusion of all modules of the WP

Input

● For each tracked person [ID +
3D position + visual
representation]

● For each sound source [DoA +
ASR + Separated speech +
Diarisation + Voice recognition]

Output

● Tracked person augmented
with audio information (to be
better defined)

DX.X Deliverable Name VX |                                                                                 |Page 19



Speech
diarisation

&
separation

(BIU)

Diarization
&

Separation
Input:

● Raw audio input [16bit].
RawAudioData.msg
(/audio/raw_audio)

Output:

● Up to three separated speech
utterances

string[] utterances
(Utterances.msg)

● Binary output for each speaker
(active/inactive)

/tts/feedback topic   will be
publishing continuously when
the robot is saying something

3 CNN-based multiple
speaker tracking.

Tested with
simulations and with
real people moving

on an arc. BIU
worked with their

own linear
microphone array

mounted in
free-space (no body

reflections).
Implemented in

Python 3.

Sound
Localization

(BIU)

Audio
Person

Tracking

Localization of sound sources.

Input:

● Raw audio input [16bit]
RawAudioData.msg
(/audio/raw_audio)

Output [for each detected source]:

● Direction of arrival (DoA) (in the
coordinate frame of the
microphone array).
[DOAResult.msg].

float32 angle  #angle with
respect to mic array frame.

3 LCMV beamformer
controlled by

speakers' activity
and direction of

arrival of sources in
the scene. The

control is
CNN-based.

ASR (BIU) Automatic
Speech

Recognition

Input:

● Separated and enhanced
speech signals [see two blocks
above]

● Speaker/Tracking ID (for local
consistency)

Output:

● Transcription (in French).
string[] recognition_results

Cloud service
French ASR. We

evaluated 8
speakers each

uttering 100
sentences recorded
at the hospital in a
quiet environment.
Test conditions are
not specified. We

evaluated: Google,
Amazon, IBM and

Azure and
stand-alone Kaldi.
Google and Azure

are the only services

DX.X Deliverable Name VX |                                                                                 |Page 20



giving useful results.
We have also added

our noise and
acoustics to the

recordings and we
are currently

evaluating the
results. We plan to
evaluate on-prem

solution by NVIDIA.

Speaker
Recognition

(BIU)

Recognise
the speaker

within a
database

Input:

● Raw audio data
RawAudioData.msg
(/audio/raw_audio), see below

● Separated speech utterances
(see above)

● Binary speaker activity
(active/inactive)

Output [for each input utterance]:

● ID of a person in the database
OR ID of a recently heard
person

WP4 (UNITN): Multi-Modal Human Behaviour Understanding

As part of WP4 the goal is to develop models and algorithms to recognise and interpret
high-level human behaviours, with three main modules:

1. Human description (T4.1)
2. Behaviour Recognition (T4.2)
3. Affect Analysis (T4.3)

API Name Handler Description Prior. Status

DX.X Deliverable Name VX |                                                                                 |Page 21



Body Pose
(UNITN)

Describing
Humans

3D skeleton (at least upper body and head
orientation)

Input:

● Torso Front ELP Camera

[/front_camera/fisheye/image_raw/co
mpressed] and
[/front_camera/fisheye/camera_info]

● Head front RGB camera
[/head_front_camera/image_raw/com
pressed]

● Positions and bounding boxes in the
front image of tracking (WP3)
[vision_msgs/BoundingBox2D or 3D]

Output [for each detected pose]:

● Header (with timestamp and the
frame of reference of the detection

● 2D pose of body points: [Nose, Neck,
RShoulder, RElbow, RWrist,
LShoulder, LElbow, LWrist, MidHip,
RHip, RKnee, RAnkle, LHip, LKnee,
LAnkle, REye, LEye, REar, LEar,
LBigToe, LSmallToe, LHeel, RBigToe,
RSmallToe, RHeel]
[geometry_msgs/Point32] For more
detail, check ros_openpose for msgs
outputs

● TrackingID (from tracking - WP3) [int]
(negative values correspond to
unassigned poses)

3 Will be integrated
during 9/2021

At the moment
only 2D pose is

estimated.

DX.X Deliverable Name VX |                                                                                 |Page 22

https://github.com/ravijo/ros_openpose/tree/master/msg
https://github.com/ravijo/ros_openpose


People’s
characteristics

(UNITN)

Describing
Humans

Role, age, etc.

Input:

● Head front RGB camera
[/head_front_camera/image_raw/com
pressed]

● Positions and bounding boxes in the
front image of tracking (WP3)
[vision_msgs/BoundingBox2D or 3D?]

Output [for each detected face]:

● identity [string]

● age [int]
● age_confidence [float]
● mask [bool]
● mask_confidence [float]
● gender
● gender_confidence [float]
● TrackingID (from tracking - WP3) [int]

(negative values correspond to
unassigned poses)

● Face bounding box 2D

See FaceDetection.msg and
FaceDetections.msg in Appendix of WP4.

Will be integrated
during 9/2021

DX.X Deliverable Name VX |                                                                                 |Page 23

http://facedetection.msg


Activity
recognition

(UNITN)

Behavior
Recognition Input:

● Torso Front ELP Camera

[/front_camera/fisheye/image_raw/co
mpressed] and
[/front_camera/fisheye/camera_info+

● Head front RGB camera
[/head_front_camera/image_raw/com
pressed]

● Bounding boxes (from tracking WP3)
corresponding to these frames.

● Use Gaze (from WP4)

Output [for each tracked person]:

● activity [string]
● activity_confidence [float]
● actor ID [int]
● co_actor ID [int] (ID of the person

involved in the interaction)

See ActivityDetection.msg and
ActivityDetections.msg in Appendix of WP4.

3 Pending to decide
the set of
activities.

DX.X Deliverable Name VX |                                                                                 |Page 24

http://activitydetection.msg


User Gaze
(UNITN)

Behavior
Recognition

Extract the gaze of the people.

Input:

● Torso Front ELP Camera

[/front_camera/fisheye/image_raw/co
mpressed] and
[/front_camera/fisheye/camera_info+

● Head front RGB camera
[/head_front_camera/image_raw/com
pressed]

● Bounding boxes (from tracking WP3)
with header specifying the timestamp
and frame of reference

● Relative position of the Bounding Box
w.r.t. the original image

Output:

● eyes located [bool]
● left / right eye x and y coordinates

(w.r.t. bounding box) [int]
● center of eyes 3D estimate (w.r.t. the

camera) [geometry_msgs/Point32]
● gaze_orientation

[geometry_msgs/Point32]

See GazeDetection.msg in Appendix of WP4.

3

DX.X Deliverable Name VX |                                                                                 |Page 25



User Attention
(UNITN)

Behavior
Recognition

Identify whom each user attends to with a
confidence score and timestamp of start and
end, no matter whether speaking or not, for
example,

Input:

● Active speakers (from WP3)
● User Gaze (from WP4)
● Bounding boxes (from tracking WP3)
● Torso front RGB image (?)
● Head front RGB image (?)

Output [per tracked person]:

● attention_confidence to each of the
players in the room (including the
robot) [float]

● timestamp
● detection_id

See Attention.msg and Attentions.ms in
Appendix of WP4.

3

F-formation
(UNITN)

Behavior
Recognition

Type, spaces.

Input:

● Bounding boxes (from tracking WP3)
● 3D Pose Estimation (from WP4)
● Torso front RGB image

Output:

● List of group assignment per each
TrackedID

DX.X Deliverable Name VX |                                                                                 |Page 26

http://attention.msg
http://attentions.msg


Non-verbal
behavior
(UNITN)

Behavior
Recognition

Emotion recognition. The available emotions
are:
ANGER, CONTEMPT, DISGUST, FEAR,
HAPPINESS, SADNESS, SURPRISE

Input [for each person tracked]

● Tracking ID [int]
● Face Torso front RGB image
● Separated speech utterances (WP3)

Output:

● string  expression
● float32 expression_confidence

See EmotionDetected.msg and
EmotionsDetected.msg  in Appendix of WP4.

WP5 (HWU): Multi-User Spoken Conversations with Robots

The overall objective of this WP is to develop techniques for multi-user conversation involving
a robot and multiple humans and the overall robot task planning.

Specifically, the outcome will be:

1. An initial baseline system for multi-user dialogue to facilitate data collection T5.1.

2. A high-level task planner to connect the overall robot goal, with the low-level goals and the
current status of the environment T5.2.

3. A multi-user conversational system trained on collected data T5.3.

API Name Handler Description Prior. Status
User

Spoken
Utterances

Multi-party
Automatic
Speech

Recognizer

Required Inputs

● Audio speaker diarisation and
extraction (WP3). (speaker ID, location,
focus of attention, audio)

Outputs

● asrMessage.

3

DX.X Deliverable Name VX |                                                                                 |Page 27

http://emotiondetected.msg


Dialogue
State

Conversation
Manager

Required Inputs

● ASR Message.
● Interaction Message

Outputs

● Dialogue state (list of people in the
conversation, intent, entities, topic,
turn, last one to speak, last robot spoke
to, last spoke to robot, ...)

Robot
Verbal

Utterance

Conversation
Manager

The text the robot should say.
Output

● TTS Message in the ROS msg form
required by PAL (WP7)

3

Robot
Social State

High-level
Planner
(Decision
Making)

Required Inputs

● Visual robot self-localization. (WP2)
● Scene description (WP2)
● User A/V tracking (WP3)
● Human description (WP4)
● Dialogue state (WP5)
● Robot behaviour (WP6)
● Robot sensors (WP7)

Outputs

● Robot Social or Interaction State (e.g.
what the robot is doing)

● Interaction Message (who we are
interacting with)

DX.X Deliverable Name VX |                                                                                 |Page 28



Robot Task High-level
Planner

or
Behaviour
Manager

Required Inputs

● Visual robot self-localisation. (WP2)
● Scene description (WP2)
● User A/V tracking (WP3)
● Human description (WP4)
● Dialogue state (WP5)
● Robot Social State.

Outputs

● Robot action to behaviour generator
(must return (bool) success)

3

WP6 (INRIA): Learning Robot Behaviour

The goal of this WP is to provide a  non-verbal Behaviour Manager and Robot Non-verbal
Behaviour Generation modules allowing to synthesise robot behaviour and to choose the
appropriate non-verbal actions.

API Name Handler Description Prior. Status

DX.X Deliverable Name VX |                                                                                 |Page 29



Robot
Navigation

Plan
(INRIA)

Robot
Behavior
Generator

This API exposes the robot navigation
module : target location, position of the
person the robot is following...
Required input:

● WP3 - Visual Person Tracking
● WP4 - People status (pose,

F-formations, user attention, activity
recognition...)

● WP2 - 2D Occupancy map
● WP2 - Object detections
● WP2 - Visual robot self-localization
● Robot status + Target person ID (int)

or Target F-formation id (int)

Interacting API:

● WP5 - Targeted addressee.

Outputs:

● Target location/orientation
(Point/Angle):
geometry_msgs/PoseStamped target_pose

● Estimated time to reach target -
distance to target (time delta)

● ARI Motor API: MoveBase.action to
send goal target_pose, and check status

Target goal should be fed directly to Move
Base action.

DX.X Deliverable Name VX |                                                                                 |Page 30

https://github.com/ros-planning/navigation_msgs/blob/ros1/move_base_msgs/action/MoveBase.action


Robot
non-verbal
behaviour
(INRIA)

Robot
Behavior
Generator

This API exposes the robot non-verbal
behaviour: pan and tilt actions, robot
gestures.
Required input:

● WP6 - Robot status
● WP5 - Dialogue state and Robot

Social State
● WP4 - Person non-verbal behaviour

and Body Pose
● WP3 - Speech diarisation &

separation

Outputs:

● ARI Motor API [sent through
/play_motion ROS action or joint
trajectory controllers of arm_left,
arm_right, head]. Should be of type
trajectory_msgs/JointTrajectory. See
Appendix in WP6 for more details.

● Gesture description + status
(idle/moving). To use /play_motion
(below) and FollowJointTrajectory
Action state (if active, robot moving;
if succeeded/aborted, finished
moving)

DX.X Deliverable Name VX |                                                                                 |Page 31

http://docs.ros.org/en/api/trajectory_msgs/html/msg/JointTrajectory.html
http://docs.ros.org/en/api/trajectory_msgs/html/msg/JointTrajectory.html


High-level
robot
status

(INRIA)

High-level
Planner

Contains the high-level action the robot is
currently executing (e.g., approaching a
person, quitting discussion group).

Required input:

● WP3/WP4 - Person id list / position /
status

Interaction:

● WP5 - High level planner

Outputs:

● Robot status (following a person /
joining a group / escorting a person
to a location / idle / participating in a
discussion)[ROS Action]. Example:

string action
string[] parameters
uint32 priority

● Target person ID (int) or Target
F-formation (int)

WP7 (PAL): Robot Customization and Software Integration

Modules for WP7 include ARI robot’s software architecture itself and ROS packages,
messages, services and actions that are necessary to interface its sensors and existing
modules with those developed in WP1 to WP6. Some of which most relevant are access to
its cameras, microphone, and joints, defined in the robot’s manual.

ARI cameras

For most modules raw images are needed. Main camera topics (excluding camera info):

Back RGB-D camera:

/torso_back_camera/fisheye1/image_raw
/torso_back_camera/fisheye1/image_raw/compressed

DX.X Deliverable Name VX |                                                                                 |Page 32



Front RGB-D camera:

/torso_front_camera/aligned_depth_to_color/image_raw
/torso_front_camera/aligned_depth_to_infra1/image_raw
/torso_front_camera/color/image_raw
/torso_front_camera/color/image_raw/compressed
/torso_front_camera/depth/color/points
/torso_front_camera/depth/image_rect_raw
/torso_front_camera/infra2/image_rect_raw

Head RGB camera:

/head_front_camera/image_raw/compressed

Front and back torso fisheye cameras:

/front_camera/fisheye/image_raw/compressed
/rear_camera/fisheye/image_raw/compressed

Microphone-array (audio input)

ARI uses a ReSpeaker Array MicV2.0, with the respeaker_ros package that is used to
acquire audio input for WP3 modules.

/sound_direction [std_msgs/Int32] -> result of DoA
/sound_localization  [geometry_msgs/PoseStamped] -> result of DoA as pose
/audio [AudioData.msg]  -> raw audio
/is_speeching [boolean] -> speech detected yes/no
/speech_audio [AudioData.msg] -> audio data while speaking

Note that as part of the project and WP3 work adjustments will be made to how audio is
retrieved to ensure high-quality capture.

Motors and joints

ARI’s joints may be controlled using the joint_trajectory_controller, of interest for WP4 and
WP6 modules. Specifically ARI has 3:

● arm_left_controller
● arm_right_controller
● head_controller

For each controller:

/arm_left_controller/command (trajectory_msgs/JointTrajectory)

DX.X Deliverable Name VX |                                                                                 |Page 33

https://github.com/furushchev/respeaker_ros
http://wiki.ros.org/Robots/ARI/Joint%20Trajectory%20Controller
http://docs.ros.org/en/api/trajectory_msgs/html/msg/JointTrajectory.html


● Topic interface to move the left arm

/arm_left_controller/follow_joint_trajectory (control_msgs/FollowJointTrajectoryAction)

● Action interface to move the left arm
● In the case of action -> action state will indicate if robot is idle/moving: state
● pending: goal has yet to be processed by the action server
● active: goal is currently being processed by the action server
● succeeded: goal successfully achieved
● aborted: goal was terminated

Coordinate changes

Provided by ROS’s TF package (http://wiki.ros.org/tf). Using a ROS TF Listener it is possible
to read the transformation between a source_frame and a target_frame.
Example using a terminal:

rosrun tf tf_echo /head_front_camera_link /torso_front_camera_link

rosrun tf tf_echo /torso_front_camera_link /head_front_camera_link (backward
transformation)

4. QUALITY ASSURANCE

This section describes the main software and continuous integration guidelines as well as
how the software modules and results are stored and updated.

Gitlab

The source code and results of the SPRING-ARI software will be stored and maintained for 4
years minimum past project ending. Specifically at SPRING partner INRIA’s private Gitlab
(https://gitlab.inria.fr/), which while being internal accepts all invites received to the
administrators.

Each Work-Package (WP) has its own sub-group repository, where different projects are
added. And each WP has a leader, which is in charge of their repository (Figure 9).

DX.X Deliverable Name VX |                                                                                 |Page 34

http://docs.ros.org/en/api/control_msgs/html/msg/FollowJointTrajectoryAction.html
http://wiki.ros.org/tf


Figure 9:SPRING Gitlab repository

● WP1 User Application: https://gitlab.inria.fr/spring/wp1_user_application
● WP2 Mapping and Localisation:

https://gitlab.inria.fr/spring/wp2_mapping_localization
● WP3 AV Perception: https://gitlab.inria.fr/spring/wp3_av_perception
● WP4 Behavior: https://gitlab.inria.fr/spring/wp4_behavior
● WP5 Spoken Conversation: https://gitlab.inria.fr/spring/wp5_spoken_conversations
● WP6 Robot Behavior: https://gitlab.inria.fr/spring/wp6_robot_behavior
● WP7 ARI: https://gitlab.inria.fr/spring/wp7_ari

Software Integration Guidelines

As part of software integration the established GitHub Flow model will be used. Despite the
name, it works with any git infrastructure, in our case, gitlab.

At all times, the main (or master) branch must be usable, or at least compilable even if it's
non-functional. New features or bug fixes are done in separate branches, merge requests are
submitted by the developers and approved by each WP leader (maintainer) after review.

If this workflow is not followed and some breaking changes are committed to the main
branch, other partners' progress may be affected if they cannot compile or execute their
code.

Specifically, here we will have the following procedure, as part of Tasks 7.3, 7.4 and 7.5 of
software integration.

DX.X Deliverable Name VX |                                                                                 |Page 35

https://gitlab.inria.fr/spring/wp1_user_application
https://gitlab.inria.fr/spring/wp2_mapping_localization
https://gitlab.inria.fr/spring/wp2_mapping_localization
https://gitlab.inria.fr/spring/wp3_av_perception
https://gitlab.inria.fr/spring/wp4_behavior
https://gitlab.inria.fr/spring/wp6_robot_behavior


● Add new feature/code in a new branch -> work on it, add unit tests, and ensure it
works on your ARI -> each WP developer/maintainer

● If as the developer works there are integration questions, problems, Issues are raised
assigned to PAL (WP7 leader), directing  to the line of code you want  to check, as
mentioned above.

● Make sure that the code of the branch compiles properly and that it has been tested
on the robot, before assigning a merge request

● Once it is verified, do a merge request, assigned to PAL, who validate it before it is
merged. This means that the following will be checked:

○ 1. Package is deployed correctly onto the robot. If not PAL will raise an Issue
in the respective repo.

○ 2. It passess the tests, continuous integration pipeline successful. If not, PAL
raises an Issue. In parallel, if developer does not know how to test something
specifically, use same means to explain feature, in order to provide tips

○ 2. Validate API. PAL will check it is publishing the topics and msgs it
should, contrasting it with either the SPRING API document mentioned
in Section III, ensuring the module that it subscribes to all needed
components. If there are points of improvement or need to contact with
another partner/module,it will ibe checked through Issues.

○ 3. Test:  PAL will finally check the functionality on their ARI. E.g. face
recognition that it successfully recognises person. For this it is important that
all MR have a description on brief description of inputs/outputs of the
respective package, and how to run it.  If there are errors or the performance
can be improved somehow, PAL will raise an issue (Figure 10).

Figure 10: Raising Issues using Gitlab

● Once above 4 points are met, PAL merges the branch with master

DX.X Deliverable Name VX |                                                                                 |Page 36



Unit Testing

To make the WP leaders' work easier, we encourage the implementation of Unit Tests that
automatically check that the code compiles and works as expected. Before submitting a MR
all developer should ensure the tests pass.

How can I test my program does what it should?

● Using mocks: google tests (https://github.com/google/googletest.) or google mock
(https://github.com/google/googlemock). For example:

○ Check that a service that initiates face enrolment is started as it should
● Using rosbags: http://wiki.ros.org/rosbag. For example:

○ Test face detection by getting rosbag input from cameras to make sure it
successfully detects a face

○ Test speech recognition by inputting to the test rosbag of /audio topic

The following documentation for guidelines of unit testing in ROS has been taken into
account to ensure all code uploaded to Gitlab is tested thoroughly:

http://wiki.ros.org/Quality/Tutorials/UnitTesting
https://www.theconstructsim.com/how-to-test-your-ros-programs/

Continuous Integration

Continuous integration has been enabled in existing repositories, any new repositories must
be manually configured.
To enable CI we require:

● A valid .gitlab-ci.yml file must be present in the root directory of the project.
● A properly configured gitlab-runner.

The gitlab-ci.yml file defines the test structures and commands that the gitlab-runner should
execute. It can be extended for different behaviors in specific branches or on special gitlab
events such as merge requests.

The gitlab runner represents the slave node where the tests will be executed. You can have
as many as you need.
INRIA has provided a shared gitlab runner for all work packages, should it be frequently
overloaded by the amount of code changes, additional runners could be easily added.

Because the repositories are ROS, we have integrated a framework for continuous integration
with ROS called industrial_ci. This framework is easily extendable and should be able to
cover all SPRING use cases.

By the end of the project, we aim at:

● having all Merge Requests for each WP’s repo automatically compiled and unit-tested
before authorising the Merge Request to be merged to the main git branch;

DX.X Deliverable Name VX |                                                                                 |Page 37

https://github.com/ros-industrial/industrial_ci


● having (manually triggered) integration tests where the full architecture is
instantiated (using docker compose with WP-produced docker images, see below).
While we might not achieve complete integration testing with real-world data, mock
data will be used to validate the data flow between the modules, with known expected
results.

As such, we aim at 100% functional coverage of the architecture by the end of the project.

Dockers

Docker is a container platform provider where users can share and upload/downlaod
applications from the cloud. An architectural overview is shown in Figure 11. In docker, the
physical computer (the Host) runs and virtualizes applications (that are developed, deployed
and run with Containers), which are stored in the cloud. A container is launched by running
an image and is defined by a Dockerfile. An image is an environment that includes everything
needed to run an application, i.e. the code, a runtime environment, libraries, environment
variables, and configuration files. The user can pull and push images from a remote
repository by means of a terminal (Client).

PAL Robotics ARI robot has provided a base docker image running on ROS Melodic and
Ubuntu 18.04, shared with all SPRING partners through a secured gitlab.com/pal-robotics/
account. Like this each partner can pull the base docker and work in a common environment,
thus solving the problems of diversity of platforms. Instructions to use the dockers with ROS
are those coinciding with http://wiki.ros.org/docker/Tutorials/Docker.

Figure 11: Docker architecture

The different SPRING modules are developed in different programming languages (e.g.
Python 2 and 3, for instance) and using different packages, in order to ensure interoperability,
it is necessary that the SPRING-ARI supports both ROS Melodic and ROS Noetic.Our
proposed solution is to use Dockers both in development and in the robot, to mix both ROS
systems. On a development PC with ROS Noetic installed, the ARI simulation can be started
using its base Docker image as described in the first section.

DX.X Deliverable Name VX |                                                                                 |Page 38

http://wiki.ros.org/docker/Tutorials/Docker


Once the setup is configured and a container is started, the ARI simulation inside the docker
can be run and the ROS interfaces are made accessible from the Noetic installation.

On the robot, which is installed with ROS Melodic, the opposite might be needed. Each
module must be provided inside a docker image with its required environment, and will start
a container from this image inside the robot, which will be able to interact with the ROS
Melodic system.

Figure 12 shows an example of the structure, where each partner works with their docker and
the needed ROS versions. Each module or WP containers will be stored inside the
container-registry of its respective repository in gitlab, e.g.
https://gitlab.inria.fr/spring/wp2_mapping/container_registry

Figure 12: Each module or software to be wrapped in a docker container

During software integration, there are two main reasons why each partner should update the
docker image of the gitlab repository:

1. The base SPRING-ARI Image might be changed time to time, due to robot software
upgrade

2. A SPRING partner has finished a package/feature or modified the Dockerfile and
needs to be tested and used by other partners

See the Appendix for details on docker updates.

DX.X Deliverable Name VX |                                                                                 |Page 39



5.CONCLUSIONS

The preliminary structure of the SPRING-ARI software modules and API have been outlined in
this document, followed by software and continuous integration guidelines set up.

These as well as the source code will be updated between the writing of this deliverable and
autumn in relation to achieving Milestone 4.

APPENDIX

SPRING-ARI ROS API

In this appendix the main ROS mgs, actions, services and topics that will be considered are
outlined subdivided by Work-Package (WP). Some are used by the ARI robot already, while
those new ones for SPRING are added as [new]. Note this will be an evolving API and
updated in the subsequent deliverables D7.4 and D7.5.

WP2

● [new]DetectObject.msg -> corresponding to output of Object Localization with a
Single Camera

std_msgs/Header header
# class: The respective class type of the found object
string object_class

# confidence: how sure you are it is that object and not another one
# It is between 0 and 1 and the closer to 1 it is better
float32 confidence

# pose: 6D position/pose of the object w.r.t camera
geometry_msgs/PoseStamped pose

# bounding_box: The region of the image, where the object is found
sensor_msgs/RegionOfInterest bounding_box

DX.X Deliverable Name VX |                                                                                 |Page 40



● [new]DetectedObjectsArray.msg -> save as above but stores the objects in an array

std_msgs/Header header

spring_msgs/DetectedObject[] objects

● map_msgs/OccupancyGridUpdate -> to update Occupancy Grid map

Related services:

● pal_navigation_msgs/SaveMap.srv -> to save an occupancy grid map.
● pal_navigation_msgs/ListMaps.srv -> to list available maps of the robot
● pal_navigation_msgs/RenameMap.srv -> rename existing map
● nav_msgs/SetMap.srv -> set a new map together with the initial pose
● nav_msgs/GetMap.srv -> get the map as an OccupancyGrid
● [new] spring_msgs/UpdateMap.srv -> update map. Uses msgs:

map_msgs/OccupancyGridUpdate
● [new] spring_msgs/VisualRobotLoc.srv -> returns estimated pose of the robot as

PoseWithCovarianceStamped message and its confidence
● [new] DetectedObjects.srv -> detect objects in the camera stream
● [new] DetectObjectsRegion.srv -> detect object given a region of interest and object

label

Related actions:

● /move_base [move_base_msgs/MoveBaseGoal for goal message) -> send
navigation goal within a map (PoseStamped message in cartesian)

Related topics (excluding cameras):

● /loc_orb/pose [geometry_msgs/PoseWithCovarianceStamped] -> pose returned by
ORB_SLAM localization -> input

● /map [nav_msgs/OccupancyGrid] -> the occupancy grid map that was produced
using ORB SLAM is published in this topic.

● /move_base/local_costmap/costmap [nav_msgs/OccupancyGrid] -> occupancy grid
indicating obstacles in the map, as computed by the robot’s obstacle avoidance
system

● /map_metadata [nav_msgs/MapMetaData]. Return occupancy grid map information

WP3

● [new] spring_msgs/TrackedPerson2d.msg -> currently detected person

DX.X Deliverable Name VX |                                                                                 |Page 41

http://docs.ros.org/en/hydro/api/map_msgs/html/msg/OccupancyGridUpdate.html
https://github.com/pal-robotics/pal_msgs/blob/indigo-devel/pal_navigation_msgs/srv/SaveMap.srv
https://github.com/pal-robotics/pal_msgs/blob/indigo-devel/pal_navigation_msgs/srv/ListMaps.srv
https://github.com/pal-robotics/pal_msgs/blob/indigo-devel/pal_navigation_msgs/srv/RenameMap.srv
http://docs.ros.org/en/api/nav_msgs/html/srv/SetMap.html
http://docs.ros.org/en/api/nav_msgs/html/srv/GetMap.html
http://docs.ros.org/en/fuerte/api/move_base_msgs/html/msg/MoveBaseGoal.html
http://docs.ros.org/en/melodic/api/geometry_msgs/html/msg/PoseWithCovarianceStamped.html


uint64 track_id # unique identifier of the target, consistent over
time
geometry_msgs/PointStamped   position3D # person 3D position
geometry_msgs/PointStamped   velocity3D # person 3D velocity
sensor_msgs/RegionOfInterest bounding_box # bounding box for the detected
person
float32 confidence # confidence

● [new] spring_msgs/TrackedPersons2d.msg -> array of currently detected people

# Message with all 2d box in image of currently tracked people

Header header

spring_msgs/TrackedPerson2d[] detections # all person that are currently being
tracked

● [new]DOAResult.msg -> indicates direction of arrival angle

# Angle with respect to the microphone array frame
float32 angle

● [new]Utterances.msg -> array of string utterances:

string[] utterances

Related topics:

● [new] /audio/raw_audio [RawAudioData.msg] -> publishes audio from ARI’s
ReSpeaker (respeaker_ros) using all the 6 channels.

Header header
int8   nb_channel
int32  rate
int32  format
int32  sample_byte_size
int32  nb_frames
int16[] data

DX.X Deliverable Name VX |                                                                                 |Page 42



● [new] /spring_recognizer/words:Publishes the result and the confidence value of
real time speech recognition [SpeechResult.msg]

●
● [new] /spring_recognizer/sentences: Publishes the final result and confidence

value of speech recognition
●
● [new] /spring_recognizer/direction_of_arrival: Publishes the estimation of

the sound source position for a given utterance [DOAResult.msg]

Related actions:

● Tts.action -> given an input text, produce speech output. Interesting for this API for
example to check /tts/status to check if the robot is speaking or not (speakers active
or not)

WP4

Related ROS msgs:

● [new] FaceDetection.msg

# Person recognition

string identity
float32 identity_confidence

# Gender recognition

string gender
float32 genderConfidence

# Age recognition

int age
float32 age_confidence

# Tracking ID

int tracked_id

DX.X Deliverable Name VX |                                                                                 |Page 43

https://github.com/pal-robotics/pal_msgs/blob/hydro-devel/pal_interaction_msgs/action/Tts.action


# Face bounding box

sensor_msgs/RegionOfInterest bounding_box

● [new] FaceDetections.msg

Header header

spring_msgs/FaceDetection[]  faces

# Optional transformation between the camera frame and a certain parent frame
geometry_msgs/TransformStamped camera_pose

● [new] ActivityDetection.msg

# Indicates activity recognized for the tracked person

string activity
float32 activity_confidence
int actor_id
int co_actor_id

● [new] ActivityDetections.msg

Header header
spring_msgs/ActivityDetection[]  activities

● [new] GazeDetection.msg

# Outputs eye position and gaze information, if found

bool eyesLocated

int32 leftEyeX
int32 leftEyeY
int32 rightEyeX
int32 rightEyeY

geometry_msgs/Point32 position #centre of eyes 3D estimate

geometry_msgs/Point32 gaze_orientation #gaze orientation

sensor_msgs/RegionOfInterest bounding_box #bounding box from FaceDetection

DX.X Deliverable Name VX |                                                                                 |Page 44



● [new] Attention.msg

# Estimation of user attention

int32 tracked_id
float32 attention_confidence

● [new] Attentions.msg

#Array indicating the attention for each detected user

Header header
int32 detection_id
spring_msgs/Attention[] attentions

● [new] EmotionDetected.msg

# List available emotions detected

int32 tracked_id

#Facial expressions and their confidence
string EXPRESSION_ANGER="anger"
string EXPRESSION_CONTEMPT="CONTEMPT"
string EXPRESSION_DISGUST="disgust"
string FEAR="fear"
string HAPPINESS="happiness"
string SADNESS="sadness"
string SURPRISE="surprise"
string expression
float32 expression_confidence

● [new] EmotionsDetected.msg

Header header

spring_msgs/EmotionDetected[]  emotions

Related topics:

DX.X Deliverable Name VX |                                                                                 |Page 45



● /pal_face/faces [pal_detection_msgs/FaceDetections] -> message with the regions of
interest classified as faces.

● /pal_face/debug [sensor_msgs/Image[ -> debug image with detected faces (bounding
box included)

Related services:

● /pal_face/recognizer -> Recognizer.srv
● /pal_face/set_database

WP5

Related ROS msgs:

[new] asrMessage.msg:
asrUser Speaker; #who spoke from speaker diarization & separation
asrUser[] Listener; #list of users inside the conversation.
asrResult Utterance;
time start;
time end; #or duration

[new] asrUser.msg:
string UUID; #UUID should be same in all messages that refer to same user.
location; #User position and focus of attention messages
user_focus_of_attention; #from wp3 tracking, should have a confidence, etc.
float confidence; #confiden of user identification

[new] asrResult.msg:
boolean final; #whether the results is final or partial result.
string text;
wordResult[] words;
float confidence;

[new] wordResult.msg:
string word;
float confidence;

[new] dialogueState.msg:
string interactionID;
dialogueMsg dialogue
dialogUser lastSpoke
dialogUser lastRobotSpoke
dialogUser lastSpokeRobot

[new] dialogueMsg.msg:
string intent;
string entities;

DX.X Deliverable Name VX |                                                                                 |Page 46

https://github.com/pal-robotics/pal_msgs/blob/indigo-devel/pal_detection_msgs/srv/Recognizer.srv


dialogueTask task;
string turn;

[new] dialogueTask.msg:
string taskID;
string command;   # what is send to the dialogue arbiter.

[new] dialogueUser.msg:
string UUID;
time time_of_user_dialogue_event;
#string text;  #optional

[new] interactionMsg.msg::
time start;
bool active;
string ID;  #ID of interaction
groupInteractionMsg interactionGroup
dialogueState lastDialogue;

[new] groupInteractionMsg.msg:
userDescription[] participants;  #participants in the interaction group, [1 .. *]

[new] robotSocialState.msg:
bool inConversation;
bool inNavigation;
interactionMsg activeInteraction;
robotDescriptionMsg robotStatus

[new] robotDescriptionMsg.msg:
robotTarget;
robotAction;
robotGoal;
robotLocation;
robotGazeDirection;
RobotBattery;

WP6

Related msgs:

● [new] NavigationGoal.msg

# Robot navigation target location

geometry_msgs/PoseStamped target_pose

float32 estimated_time

DX.X Deliverable Name VX |                                                                                 |Page 47



Related actions:

PlayMotion will be used to trigger different robot gesture-based behaviours.

● PlayMotion.action -> sends a motion previously generated

string motion_name

bool skip_planning

int32 priority

● MotionInfo.msg -> information on the joints that the motion executes

string name

string[] joints

duration duration

● ListMotions.srv -> returns list of currenty loaded motions that can be played by
play_motion

MotionInfo[] motions

● isAlreadyThere.srv -> checks if the robot joint state matches the first point of a given
motion. Robot joint positions will be checked against the values found in the motion’s
firtst point, given a tolerance

goal: string motion_name

float32 tolerance (in radians)

result: bool already_there

Docker updates

Procedure to update the dockers should be the following:

docker login registry.gitlab.inria.fr
docker pull registry.gitlab.inria.fr/wp2_mapping/sciroc/mydocker

# Update your local private_gitlab containing the latest Dockerfile

DX.X Deliverable Name VX |                                                                                 |Page 48

http://wiki.ros.org/Robots/ARI/Tutorials/motions/play_motion
http://playmotion.action
http://motioninfo.msg
http://listmotions.srv
http://isalreadythere.srv


cd <wp2_mapping>
git pull --rebase
# Build your image
docker build .
# Tag the pulled docker with your personal docker name
docker tag
registry.gitlab.inria.fr/wp2_mapping/sciroc/mydocker<docker_remote_path_name>
# Upload your new image to gitlab.inria wp2_mapping
docker push <docker_remote_path_name

DX.X Deliverable Name VX |                                                                                 |Page 49


