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Abbreviations

Abbreviation Meaning
AI Artificial Intelligence

ARI Social assistive robot used by the SPRING project
API Application Programming Interface
BIU Bar-Ilan University (SPRING Partner)

CNN Convolutional Neural Network
CVUT Czech technical university in Prague (SPRING Partner)
DRL Deep Reinforcement Learning
DNN Deep Neural Network
GAN Generative Adversarial Network
GPI General Policy Iteration
GRU Gated Recurrent Units
FGD Fréchet Gesture Distance
HRI Human Robot Interaction

HWU Heriot-Watt University (SPRING Partner)
INRIA Institut National de Recherche en sciences et technologies du numérique (SPRING Partner)
MAE Mean Average Error

MAEJ Mean Average Error of Joint coordinates
MDP Markov Decision Process
MPC Multi Party Conversation
PAL PAL Robotics (SPRING Partner)

RelTR Relation Transformer
RL Reinforcement Learning

ROS Robot Operating System
RBF Radial Basis Function

SPRING Socially Pertinent Robots in Gerontological Healthcare
SF Successor Feature

SFR Successor Feature Representation
SR Successor Representation

UNITN University of Trento (SPRING Partner)
WP Work Package (of the SPRING project)
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Executive Summary

This deliverable reports the results of SPRING task T6.1: "Deep Architectures for Conversational System and Non-
verbal Behaviour". It focuses on the neural architectures and related methods that are developed for the non-verbal
control of the ARI robot as part of WP6: "Robot Learning Behavior". It furthermore summarizes the neural architec-
tures that were developed for WP2: "Environment Mapping, Self-localisation and Simulation", WP3: "Robust Audio-
visual Perception of Humans", WP4: "Multi-Modal Human Behaviour Understanding", and WP5: "Multi-User Spoken
Conversations with Robots".
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1 Introduction

The design of neural architectures is the goal of SPRING task T6.1: "Deep Architectures for Conversational System
and Non-verbal Behaviour" and part of WP 6: "Robot Learning Behavior". The goal of task T6.1 is to design neural
architectures for deep reinforcement learning and associatedmethods, that should serve as themethodological basis
for all modules learning and using optimal decision policies (T5.2, T5.3, T6.3). INRIA and HWU investigated network
designs for the low-level behaviour system, the task planner, natural language understanding and generation, and the
dialogue and non-verbal behaviourmanagers. Moreover, CVUT, BIU and UNITN designed network streams responsible
for exploiting the sensory data issued fromWP2, WP3, andWP4, respectively. Please note, as deep neural architecture
play a vital role formany components of the SPRING project, they will be further refined and developed. This document
represents their current developmental state. All developed software that is part of Task T6.1 is open source, andmade
available open access to the public on the project repository until at least 4 years after the project ends.

This deliverable summarizes the developed neural architectures and related methods. It is structured by WP for
which the neural architectures were developed. Many architectures have been already described in existing SPRING
deliverables. For these cases, the architectures are only shortly summarized with a reference to the deliverable that
gives a more in-depth description. The neural architectures investigated and developed by CVUT for WP2 ("Environ-
ment Mapping, Self-localisation and Simulation") are described in detail in SPRING Deliverable 2.1 [43] and 2.2 [44].
The main focus of this deliverable is on the work in WP6 which is described in greater detail in Chapter 5.
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2 WP3 - Robust Audio-Visual Perception of Humans

Objectives in WP3 are responsible for the robust extraction of users’ low-level characteristics from the raw auditory
and visual data. Characteristics include positions, speaking status and speech signals. The following two sections
describe first deep neural networks developed for the visual localization and tracking of humans, followed by an
overview over the networks used for the audio processing pipeline.

2.1 Visual Localization and Tracking of Humans

(Contributor: INRIA)

The goal of this neural architecture is to detect, identify, and track people using visual data from the front fish eye cam-
era. The proposed multi-person localisation and tracking module (Fig. 2.1) is based on FairMOT [67] and is described
in more detail in SPRING Deliverable 3.1 [45] and 3.2 [46]. It combines the CenterNet object detection architecture [70]
with Deep Layer Aggregation [63]. The latter is a general framework that can be used to augment a backbone architec-
ture of choice to better fuse information among layers. The network uses as a backbone the ResNet34 [20] network.
In difference to the original FairMOT architecture, we used a smaller resolution of 800x448 for the input images to
improve computational performance. Another modification is the increase in the dimension of the Re-Identification
branch from 128 as in the original FairMOT to 512. This improved the robustness of the tracker, especially to identity
switches and in situations where people were leaving the scene and re-entering a while after.

Figure 2.1: Architecture of FairMOT used for the localization and tracking of people. The input image is processed
by a ResNet encoder-decoder network. Its output is used for the detection of people, i.e. the bounding boxes around
them, and the Re-Identification which gives them a consistent ID over several time frames even if occlusions occur.
(Figure adapted from [67].)
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2.2 Audio Processing Pipeline

(Contributor: BIU)

The goal of the audio processing pipeline is to acquire the sound signal from the ReSpeaker audio device, enhance it,
and then apply an automatic speech recognition algorithm to transcribe the audio utterances for further processing
by the dialogue system. The audio pipeline is depicted in Fig. 2.2.

Figure 2.2: Audio pipeline.

The audio signal is acquired by the ReSpeaker 4-channel microphone array on ARI. The first step of the audio
processing pipeline is the application of a speech enhancement algorithm. We are applying aMixture of Deep Experts
(MoDE) architecture (developed by BIU) that uses a single microphone. The algorithm is capable of significantly
suppressing background noise, e.g., babble noise [8]. At the later stage of the project we will also incorporate speaker
separation (eithermulti-microphone or single-microphone), and a narrow-band noise reductionmodule. If required, we
will also implement a dereverberation algorithm. Echo cancellation (to supress ARI’s self-voice) will be incorporated,
if a full-duplex dialogue management system will be deployed.

The enhanced speech is fed into automatic speech recognition (ASR) engine in the French language. We use a pre-
trained RIVA engine, which is a conformer-based, on-prem streaming solution by Nvidia.1 The transcribed utterance
is fed to the dialogue system.

In parallel, we apply the speaker identification step, comprising two stages. In the first stage, we apply a voice
activity detector (VAD) using the WebRTC package.2 In the second stage, voice representation is extracted using a
pre-trained TitaNet model by Nvidia [23]. In the last step of the pipeline, the speaker ID is merged with the correspond-
ing transcribed utterance. In the future, the location of the speaker, as extracted from the audio-visual data, will be
associated as well.

1https://developer.nvidia.com/riva
2https://webrtc.org/
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3 WP4 - Multi-Modal Human Behaviour Understanding

We developed 5 modules as part of WP4 ("Multi-Modal Human Behaviour Understanding"):

• Biometric recognition

• Monocular depth estimation

• Multi-target body pose estimation

• Gaze target recognition

• Face mask detection

Since we already provided the detailed description of the neural architectures in terms of all the modules mentioned
above in D4.1 [47], in this deliverable, we briefly list out the corresponding parts in the following sections.

3.1 Biometric Recognition

(Contributor: UNITN)

The task of biometric recognition is to detect faces, identify if they have been already seen, and the classification
of age and gender. We developed a transfer method to utilize in a more efficient manner FaceNet [42], a state-of-the-
art deep convolutional network that learns latent embeddings for faces. These embeddings are then used as input for
networks of the downstream tasks (identification, classification of age and gender). The problemwith FaceNet is that
it is very large, having 27.9 million parameters, so that it is very time consuming to be executed. We implemented a
transfermethod to train a smaller network, having only 6.7million parameters, but that reaches the same performance
as FaceNet. Please refer to D4.1 [47] (Section 2.4) for more details.

3.2 Monocular Depth Estimation

(Contributor: UNITN)

Themonocular depth estimation is basedon a state-of-the-art network designed for embedded systems: FastDepth [60].
Such network has been improvedby replacing theMobileNet backbonewith the latest version ofMobileNetV3 Large [21].
Our implementation is capable of dense depth predictions while running on low-powered CPUs in real-time. Some
qualitative results of our monocular depth estimation network is available on D4.2 [48] (Section 3).

3.3 Multi-Target Body Pose Estimation

(Contributor: UNITN)

The pose estimation detects the joints and limbs of people in the fish eye camera view of ARI. For this purpose we
integrated OpenPose1 which is based on a two-branch multi-stage CNN [7]. Please refer to D4.1 [47] (Section 2.5) for
more details.

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
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3.4 Gaze Target Recognition

(Contributor: UNITN)

Our multimodal pipeline for gaze target detection has three-pathways to process shown in Fig 3.1: the head image,
the scene image, and the depth map. We implicitly learn the orientation features using the head attention network.
The RGB and depth features obtained by the scene and depth networks are multiplied by the head attention map,
which allows the fusion and prediction module to focus on objects in the field-of-view of the person of interest. The
multimodal joint learning and gaze prediction are performed by the fusion and prediction component via late-fusion
of the RGB and depth embeddings. The outputs of our architecture are: 2D heatmap, where higher values are closer
to the gaze target, and the probability of the gaze being inside or outside the scene. A set of qualitative results of our
gaze target estimation network is available on D4.2 [48] (Section 2.3).

Figure 3.1: Architecture of the gaze target detection.

3.5 Face Mask Detection

(Contributor: UNITN)

We implemented a deep neural network face detection mechanism. We started from the open source API provided by
AIZOOTech2. For the ROS integration, a ROS wrapper was developed by us for integration. The prototype of the mask
detection model is a Single Shot MultiBox Detector (SSD) [31]. The model architecture is shown in Fig. 3.2. Please
refer to D4.1 [47] (Section 2.3) for more information.

2https://github.com/AIZOOTech/FaceMaskDetection
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Figure 3.2: Mask detection model which is based on the Single Shot MultiBox Detector [31]. The image is from https:
//github.com/AIZOOTech/FaceMaskDetection.
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4 WP5 - Multi-User Spoken Conversations with Robots

Several neural architectures and techniques for multi-user conversation involving a robot and multiple humans are
developed to train the conversational system, including natural language understanding, dialogue management, and
natural language generation modules. To deal with the challenges of a multi-user conversation AI system for Human-
Robot Interaction several neural conversational architectures were developed for SPRING:

• Neural Networks for Multi-Party Conversation Understanding

• Multi-modal Deep Learning for Vision and Language Grounding

The current neural architectures for conversational systems, i.e. the recent trend in massive pre-trained Language
Models which map input word sequences to output word sequences [6, 37, 68], are not in themselves suitable for
deploying real-world applications, especially in a social HRI setting as SPRING, as there are many reported examples
[14] of such systems, being inconsistent, making errors of deletion, and substitution, and being repetitive. Their outputs
are also generally not conditioned on external representations such as knowledge bases or task representations, as
would be required for a deployed HRI system.

These deficiencies render stand-alone neural conversational / response generation systems inappropriate as so-
lutions to conversational AI for HRI. However, neural models of various types can be used within a larger more se-
mantically controllable conversational AI system as we are developing in the multi-party conversational system of
SPRING.

4.1 Language Models for Multi-Party Conversations

(Contributor: HWU)

Multi-Party Conversations (MPC), where a computational agent needs to interact with two or more humans, cannot
simply be modelled as several bi-lateral systems running in parallel, since there are important interactions between
the humans which the system will need to track accurately.

Most of the existing methods focus on building dialogue systems that assume utterances are sequential but this
is not the case in multi-party conversations. Utterances in a two-party conversation alternate between interlocutors in
a sequential information flow. However, in a MPC each utterance can be spoken by anyone and address anyone else
in the conversation, which constitutes a graphical information flow [17], see Figure 4.1.

Figure 4.1: Illustration of a graphical information flow in an MPC. Pink rectangles denote utterances and blue circles
denote interlocutors. [16, 17].
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Figure 4.2: Input representations and model architectures of the three self-supervised tasks for interlocutor structure
modeling, including (a) reply-to utterance recognition, (b) identical speaker searching and (c) pointer consistency
distinction in MPC-BERT [18].

Models for Multi-Party Conversation Understanding

There are several important research problems to be addressed in MPC understanding: addressee identification;
incrementality; multi-party state tracking; turn-taking; and response generation. Multi-party state tracking needs to
maintain an accurate representation of each individual agent’s goals, plans, and information. While intuitively, the
complicated interactions between interlocutors, between utterances, and between interlocutors and utterancesmight
make these tasks complementary among each other, most of existing studies design models for each individual task
in MPCs separately [17].

The work of Gu et al. [18], proposed first a unified pre-trained model. The model is unified as it represents both
utterances and interlocutors together, with several supervised tasks for pre-training a language model focusing on
modeling only interlocutor structures and utterance semantics. It jointly learns “who says what to whom”, Addressee
recognition, speaker identification, and response selection by considering addressee and speaker related tasks as
complementary signals for response selection during the pre-training stage. Their model, named MPC-BERT, choose
BERT [13] as the backbone of their pre-trained language model for MPC. A task-dependent non-linear transformation
layer is placed on top of BERT in order to adapt the output of BERT to different tasks, the architecture can be seen on
Figure 4.2.

[69] proposed DialogLM, a pre-training framework for long dialogue understanding and summarization. Consid-
ering the nature of MPCs, they propose dialogue window denoising approach for generatively pre-training DialogLM.
Through window-based denoising, the model can learn the format and characteristics of dialogues in a general way,
thereby performing better in various dialogue-oriented tasks. Furthermore, to process longer input, they augment
the model with sparse attention which is combined with conventional attention in a hybrid manner. DialogLM, [69],

Figure 4.3: Pre-train task for DialogLM: window-based denoising. And model architecture for DialogLM: introducing a
hybrid attention approach in the Transformer architecture [69].
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chooses a Transformer as their backbone neural architecture, because it shows promising performance and flexi-
bility on various NLP tasks, but leverages hybrid attention method in the Transformer architecture with the recently
proposed sparse Sinkhorn attention [56], as shown in Figure 4.3.

We will use our recently designed multi-party wizard-of-oz data collection with 2 humans and an ARI robot, [50],
for pre-training and fine-tuning a T5model [38] on DialogLM [69]. The goal of WP5 and Task 5.3 is to use the collected
data to develop a system that is able to track multiple people in conversation: what each speaker is saying, what their
individual goals/questions are, etc. As well as correctly tracking the goals of each user it should be able to determine
which goals have been met and which still need to be addressed, and determine points in the conversation at which
it is possible or desirable to “barge-in” with information meeting a user’s goals.

4.2 Semantic Scene Graphs for Visual Grounded Dialogue

(Contributor: HWU)

Another deficiency of current neural models is that their representations of word-meaning are not grounded in vi-
sual information. This is crucial for HRI in cases where humans wish to talk about or refer to objects, as well as to
hold coherent conversations with robots in visual/spatial situations where objects and their relations are critical for
task success (e.g. directions to a place or object). In this regard, there has beenmuch recent work on ‘visual dialogue’
tasks where grounded language understanding and generation in context is paramount [51, 52, 53]. Visual language
grounding refers to the connection between words (symbols) and their referents in the visual space, e.g., objects, their
relationships, and their attributes. For SPRINGwe explore to what extent we can usemore visually grounded semantic
representations of utterances within the multimodal dialogue context developed in the system, our video demonstra-
tion at HRI 20211 [34] was a first step in this direction as it uses deep learning for object recognition to create spatial
representations which are used to answer questions from the user.

Semantic scene graphs are data structures that encode the semantic information of a visual scene into a graph,
where nodes represent instances of some sort, and edges represent their relationships. This allows for more com-
pact and interpretable representations that can be leveraged for inference about the scene. Scene graphs give the
opportunity to organise the knowledge about a scene into a queryable structure. Helping to build systems that can
answer certain questions about the environments where they operate.

Scene Graph Generation

The scene graph generationmodule is implemented as a ROS action server. Given an empty goal, the server processes
the current image from the robot’s camera feed and returns the scene graph information by means of a custom mes-
sage that contains fields for the object bounding boxes (bbox), labels (bbox_labels) and scores (bbox_scores), and for
the relationship pairs (rel_pairs), their labels (rel_labels) and scores (rel_scores). By interpreting this information, an
action client can produce dialogue responses that leverage the semantic information available in the scene graph.

1https://www.youtube.com/watch?v=eY_BNxwrlPg

Figure 4.4: RelTR encoder-decoder architecture [11]. A pair of subject and object representations with attention heat
maps is decoded into a triplet <subject-predicate-object> by feed forward networks (FFNs). CSA, DVA and DEA stand
for Coupled Self-Attention, Decoupled Visual Attention and Decoupled Entity Attention. Ep, Et, Es and Eo are the
positional, triplet, subject and object encodings respectively.
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The proposed approach generates scene graphs by an end-to-end scene graph generation model Relation Trans-
former (RelTR) [11]. RelTR (Fig. 4.4) is one-stage end-to-end framework for scene graph generation based on Trans-
former’s encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers
a fixed-size set of triplets subject-predicate-object using different types of attentionmechanismswith coupled subject
and object queries. RelTR can predict the subjects (blue), objects (orange) and their predicates simultaneously with
learned subject and object queries (Fig. 4.5).

In contrast to most existing scene graph generation methods, [29, 30, 54, 65, 66], RelTR is a one-stagemethod that
predicts sparse scene graphs directly only using visual appearancewithout combining entities and labeling all possible
predicates. The model was trained on Visual Genome [24], a large dataset of images annotated with objects, their
attributes and relationships to other objects, natural language descriptions, and question/answer pairs. Compared
with other state-of-the-art methods, RelTR achieves state-of-the-art performance using only visual appearance, with
very few model parameters and fast inference.

The model for Vision and Language Grounding leverage semantic scene graphs to guide visually grounded con-
versations (the system architecture is illustrated in Fig. 4.5). Concretely, by having access to a graph representation
of the visual scene, the system is able to reason about the location of objects in order to answer user queries as
well as to produce meaningful descriptions. Moreover, by combining such ability with task-based and open dialogue
conversational system developed in WP5 [49], the system is able to engage in richer conversations with its users.

Figure 4.5: Top: Visual grounded situated dialogue combine with the conversation system architecture [49]. Bottom:
Visual Dialogue examples with RelTR and ARI robot cameras in a mock-up hospital reception waiting room.
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5 WP6 - Learning Robot Behaviour

Several neural architectures and methods for an efficient training of neural architectures were developed to learn and
control non-verbal robot behaviors. Such behaviors include:

• Human-aware navigation,

• Navigation with the purpose to optimize certain sensor measurements such as to perceive people and listen to
their utterances

• Co-speech gesture generation

The next section introduces Transfer and Meta Learning methods to train Deep Reinforcement Learning (DRL) neural
architectures. The second section introduces a network to generate gestures for ARI during conversations. The focus
of this deliverable is on WP6 because its final results have not yet been discussed in previous deliverables. Therefore,
this chapter introduces the algorithms and architectures in more detail compared to previous chapters.

5.1 Transfer & Meta Deep Reinforcement Learning

We investigated two procedures to aid the training of deep neural architectures in the context of Reinforcement Learn-
ing (RL). RL providesmethods to learn sequential decisionmaking tasks which comprisemany of our target behaviors
such as: human-aware navigation; joining, keeping and exiting a conversation with a group of people; or the optimal
collection of sensory information (visual and auditory). To handle such complex tasks deep neural networks are uti-
lized as function approximators for the central RL components such as value functions or policies. This Deep RL (DRL)
approach has the problem of requiring large amounts of data that need to be collected in simulation or on the robot
which is time intensive. A second problem, for most of our targeted social robotics tasks, is that the definition of the
reward function which is optimized by DRL is often not evident. It needs to be iteratively searched by RL experiments
which further increases the need for data. As a solution, we explored Transfer and Meta Learning methods in the
context of DRL with the goal to reduce the amount of needed data. The next section introduces the background in
DRL and Transfer & Meta Learning, followed by descriptions of the developed methods and their results.

5.1.1 Background: Deep Reinforcement Learning and Transfer & Meta Learning

RL investigates algorithms to solve multi-step decision problems, aiming to maximize the sum over future rewards
[55]. RL problems aremodeled asMarkov Decision Processes (MDPs) which are defined as a tupleM ≡ (S,A, p, R, γ),
where S andA are the state and action set. An agent transitions from a state st to another state st+1 using action at at
time point t collecting a reward rt: st

at,rt−−−→ st+1. This process is stochastic and the transition probability p(st+1|st, at)
describes which state st+1 is reached. The reward function R defines the scalar reward rt = R(st+1) ∈ R for the
transition. The goal in an MDP is to maximize the expected return Gt = E

[∑∞
k=0 γ

kRt+k

]
, where Rt = R(St+1). The

discount factor γ ∈ [0, 1) weights collected rewards by discounting future rewards stronger. RL provides algorithms
to learn a policy π : S → A defining which action to take in which state to maximise Gt.

Value-based RL methods use the concept of value functions to learn the optimal policy. The state-action value
function, called Q-function, is defined as the expected future return taking action at in st and then following policy π:

Qπ(st, at) = Eπ

{
rt + γrt+1 + γ2rt+2 + . . .

}
= Eπ {rt + γQπ(St+1, At+1)} . (5.1)

The Q-function can be recursively defined following the Bellman equation such that the current Q-value Qπ(st, at)
depends on the Q-value of the next stateQπ(st+1, at+1). The optimal policy for an MDP can then be expressed based
on the Q-function, by taking at every step the maximum action: π∗(s) ∈ argmaxaQ

∗(s, a).
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Figure 5.1: Iterative Transfer RL procedure for social robotics. How to define the reward functionR(s) in social robotics
is often not obvious. For example, the learned behavior for reward function R1 collides with objects, whereas for R2

it collides with humans. Several functions (R1, . . . , Rn) need to be evaluated before an appropriate function is found
that results in the wanted behavior. Evaluating each reward function costs time. Transfer Learning is used to extract
and use knowledge K from the training of behaviors for previous reward functions to new reward functions with the
goal to improve the learning speed, i.e. to reach a high reward with fewer learning steps.

The optimal Q-function can be learned using a temporal difference method such as Q-learning [59]. Given a tran-
sition (st, at, rt, st+1), the Q-value is updated according to:

Q(st, at)← Q(st, at) + α

(
rt +max

at+1

Q(st+1, at+1)−Q(st, at)

)
, (5.2)

where α ∈ (0, 1] is the learning rate.
Deep Reinforcement Learning (DRL) uses deep neural architectures to approximate the central RL components,

such as the Q-function (5.1). See [28] for an in-depth introduction to DRL. DRL has the problem that it often needs a
lot of training examples, i.e. observations of transitions in the environment, to learn a behavior [25]. This problem is
especially aggravated for social robotics, where interactions are costly in terms of time.

Moreover, a further problem in social robotics is the question of how to define the reward function for a targeted
behavior [1]. It is often not foreseeable what behavior will be learned for a certain reward function. For example, in
a navigation task where the robot approaches a human, the reward function might have a component punishing fast
movements. This should ensure that the robot is not learning to behave erratic or to approach humans with a too high
velocity. How strong this component influences the whole reward function can lead to vastly different behaviors. If
the punishment is too small, then the robot might approach a human too fast and is perceived as threatening. If the
punishment is too large, then the robot might approach too slow. Often, the reward function needs to be iteratively
adapted while learning an appropriate behavior (Fig. 5.1). With standard DRL the task would have to be learned from
scratch for each new reward function costing a lot of time.

We investigated Transfer & Meta Learning techniques as a solution to these problems. They transfer knowledge
from already learned source tasks to target tasks [27, 57, 72] to improve learning performance on the target task. This
enhancement can improve learning speed, resulting in a higher initial performance, or a higher final performance. Our
goal is to reduce the cost of learning for tasks where the reward function is changing due to incremental adaptations
by the user (Fig. 5.1). The next two sections will introduce our methods and present our results.

5.1.2 Successor Feature Representations

(Contributor: INRIA)

We investigated the application of the Successor Representation (SR) and Successor Feature (SF) framework, two
prominent RL Transfer methods, for SPRING’s social robotics tasks. Both have restrictions making them not directly
applicable. We developed an extension, the Successor Feature Representation (SFR) framework, to overcome these
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restrictions. The next section gives a brief introduction to SR and SF before laying out SFR and showing preliminary
experimental results.

Background: Successor Representation and Successor Features

The SR framework [12] provides a generalization of value-based RL. It decouples the dynamics of a policy, i.e. which
states are visited, from the rewards that are received. The SR function M defines the discounted cumulative future
probability of reaching a state s′ from state s:

Mπi(st, at, s
′) =

∞∑
k=0

γk Pr(s′ = st+1+k|π) (5.3)

where Pr(s′ = st|π) is the probability to be in state s′ at time point t if following policy π. Given this formulation it is
possible to define the Q-function of a policy πi for a reward function R:

Qπi(st, at;R) =
∑
s′∈S

Mπi(st, at, s
′)R(s′) (5.4)

Based on this formulation it is possible to transfer knowledge from solved source tasks, for which policies and SR’s
(M -functions) have been learned, to a target task by reevaluating the learned policies on the reward function of the
target task. This can be done by the General Policy Iteration (GPI) procedure [4]. It defines that for a new reward
function Rj an action is taken by evaluating all previously learned policies and the current policy for the new task R:

π(st) = argmax
a

max
i
Qπi(st, a;R) (5.5)

GPI selects the action that is optimal according to the best performing policy from previous tasks or the current task.
This allows to improve the performance on a new task. In this case the initial policy for this task will be random.
Nonetheless, some previous learned policies might not be optimal for this new task but behave better than a random
behavior. The SR and GPI procedures allow searching for the action that performs best over all previous learned
policies. As the policy for the new task learns and might improve over the previous policies, it will be mostly selected
by the GPI procedure at the end of training.

Nonetheless, SR has the problem that its current implementations are only able to handle finite and discrete state
spaces, i.e. where S ∈ {s1, . . . , sN}. Learning the SR representationM (5.3) for high dimensional state spaces such as
images or auditory signals is difficult and not achieved so far. Moreover, for continuous state spaces the computation
of the Q-values (5.4) becomes an intractable integral over the continuous state space.

The SF framework [4, 15] extends SR to handle high-dimensional, continuous state spaces S ∈ Rm. It is based on
the assumption that rewards are linearly defined (or approximated) based on state features ϕ(s) ∈ Rn and a reward
weight vector w ∈ Rn:

R(st) = ϕ(st)
⊤w (5.6)

State features Φ ⊆ Rn are a low dimensional description of important properties of a state that can be used to define
the rewards. For example, an agent that collects different types of foods, it could be a one-hot vector that defines
which food type is collected: ϕ(s) = [0, 0] if no food is collected, ϕ(s) = [1, 0] if apples are collected, and ϕ(s) = [0, 1] if
berries are collected. The weight vectorw ∈ R2 describes then how much each type of food is rewarded. A weight of
w = [1.0, 2.0] gives a reward of r = 1.0 for collecting apples and r = 2.0 for berries. Based on the linear assumption
(5.6) the Q-value can be again decoupled in a part that describes the dynamics of a policy, i.e. the discounted future
cumulative features ψπi(st, at), and the rewards, i.e. the weight w:

Qπi(st, at;w) = E
{
rt + γ1rt+1 + γ2rt+2 + . . .

}
= E

{
ϕ⊤t w + γ1ϕ⊤t+1w + γ2ϕ⊤t+2w + . . .

}
= E

{ ∞∑
k=0

γkϕt+k

}⊤

w ≡ ψπi(st, at)
⊤w (5.7)

Theψ function canbe learnedwith a temporal difference update similar toQ-learning. Given a transition (st, at, rt, st+1):

ψπi(st, at)← ψπi(st, at) + α (ϕ(st+1) + γψπi(st+1, at+1)− ψπi(st, at)) with at+1 = argmax
a

Qπi(st+1, a;wi) (5.8)

Transfer from source task to a new target task, i.e. a new rewardweight vectorw, is performed using theGPI procedure
(5.5).
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TheSF framework is able to handle continuous high-dimensional state spaceswith low-dimensional feature spaces
[4]. Nonetheless, its assumption on a linear combination of features and a reward weight vector restrict is application.
For example, in social robotics we might have as a feature the speed of the robot ϕspeed ∈ R and as reward function a
Gaussian: r(ϕspeed) = exp(

(ϕspeed−µ)2

σ ), where µ ∈ R represents the preferred speed. Such a reward function cannot
be represented with a linear combination of features and a weight: r(ϕspeed) ̸= ϕ⊤speedw.

Method: Successor Feature Representation

We proposed the novel Successor Feature Representation (SFR) framework [40] to overcome the shortcomings of SR
and SF. SFR lends from the SF framework the idea of state features ϕ(st) ∈ Rn that describe the important properties
of a state to define the reward function. In difference to SF, the SFR framework does not assume a linear composition
of rewards into features and a weight vector but allows general functions: R(st) = f(ϕ(st)). From the SR framework,
SFR borrows the concept of the expected future cumulative visitation probability (5.3), but instead of being defined
over discrete states it is over the continuous features:

ξπ(st, at, ϕ) =

∞∑
k=0

γk Pr(ϕt+k = ϕ|π) , (5.9)

where Pr(ϕt = ϕ|π) is the probability of observing feature ϕ at time point t following policy π. Similar to the SR
framework, the Q-function can be defined using the ξ-function:

Qπ(st, at) =

∞∑
k=0

γkEp(ϕt+k|st,at;π) {R(ϕt+k)} =
∞∑
k=0

γk
∫
Φ

Pr(ϕt+k = ϕ|π)R(ϕ)dϕ

=

∫
Φ

R(ϕ)

∞∑
k=0

γk Pr(ϕt+k = ϕ|π)dϕ =

∫
Φ

R(ϕ)ξπ(st, at, ϕ)dϕ (5.10)

Given a transition (st, at, st+1, ϕt) the ξ-learning update operator is defined as:

ξπ(st, at, ϕ)← ξπ(st, at, ϕ) + α
(
Pr(ϕt = ϕ|st, at) + γξπk (st+1, āt+1, ϕ)− ξπ(st, at, ϕ)

)
(5.11)

where āt+1 = argmaxa
∫
Φ
R(ϕ)ξπ(st+1, a, ϕ)dϕ.

For transfer, SFR uses the GPI procedure (5.5) similar to SR and SF. Besides the introduction of SFR, we also proved
its convergence to the true Q-function and provide a bound on its performance during transfer [40].

The computation Q-values for SFR in (5.10) requires an integral over the features. This is theoretically intractable
but can be numerically approximated by introducing a discretization of the feature space. We further make the as-
sumption that reward functions are a sum over independent features:

R(ϕ) =

n∑
k=1

rk(ϕk) (5.12)

where the reward component functions ri : R 7→ R can be of any form such as Gaussians. As a result the Q-value can
be computed as:

Qπ(s, a) =

∫
Φ

R(ϕ)ξπ(s, a, ϕ)dϕ =
∑
k

∫
Φk

rk(ϕk)ξ
π
k (s, a, ϕk)dϕk (5.13)

whereΦk is the feature space for each feature dimension and ξπk is a ξ-function for the feature dimension k. Moreover,
we introduce a discretization of the ξ-function that discretizes the space of each feature dimension k in U = 11 bins
with the centers:

Xk =
{
ϕmin
k + j∆ϕk : 0 < j < U

}
with ∆ϕk :=

ϕmax
k − ϕmin

k

U − 1

where∆ϕk is the distance between the centers, and ϕmin
k is the lowest center, and ϕmax

k the largest center. Given this
discretization and the decomposition of the Q-function according to (5.13), the Q-values can be computed by:

Qπ(s, a) =
∑
k

∑
x∈Xk

R(x)ξπ(s, a, x) . (5.14)

This formulation removes the integral from (5.10) making the computation of the Q-function feasible without intro-
ducing while allowing a general form of reward functions (5.12).
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The ξ-function ξ(s, a, ϕ) ∈ R is approximated with a neural network ξ̃. It takes as input the state s ∈ Rm. For
current tasks, the agent has only a low number of discrete actions (|A| = 3). A separate neural network is trained for
each of the actions. The output of each network is the ξ-value for each of the n feature dimension and each of its U
discretized bins.

The ξ-function is updated according to the following procedure. Instead of providing a discrete learning signal to
the model, we encode the observed feature using continuous activation functions around each bin center. Given the
j’th bin center of dimension k, xk,j , its value is encoded to be 1.0 if the feature value of this dimension aligns with
the center (ϕk = xk,j). Otherwise, the encoding for the bin decreases linearily based on the distance between the bin
center and the value (|xk,j − ϕk|) and reaches 0 if the value is equal to a neighboring bin center, i.e. has a distance
≥ ∆ϕk. We represent this encoding for each feature dimension k by uk ∈ (0, 1)U with:

∀k∈{1,2,3} : ∀0<j<U : uk,j = max

(
0,

(1− |xk,j − ϕk|)
∆ϕk

)
(5.15)

To learn ξ̃ we update the parameters θξ using stochastic gradient descent following the gradients ∇θξLξ(θ
ξ) of the

loss based on the ξ-learning update (5.11):

∀ϕ ∈ Φ : Lξ(θ
ξ) = E

{
1

n

3∑
k=1

(
uk + γξ̃k(st+1, āt+1; θ̄

ξ)− ξ̃k(st, at; θξ)
)2

}
with āt+1 = argmax

a

∑
k

∑
x∈Xk

R(x)ξ̃(st+1, a, ϕ; θ̄
ξ)

(5.16)

where n is the number of feature dimensions and ξ̃k is the vector of the U discretized ξ-values for dimension k.

Experimental Results

The SFR framework has been evaluated in four environments. Three environmentswith discrete features (ϕ ∈ {0, 1}N )
and one environment with continuous features (ϕ ∈ RN ). We summarize here the results for the environment with
continuous features, the racer environment (Fig. 5.2), as continuous features are usually prevalent in robotic tasks,
such as, distances to humans or objects. Please refer to [40] for further details about the racer environment and the
results for the other environments.

In the racer environment, the agent starts at a random position on a 2D map. It drives around the map for 200
timesteps before the episode ends. Similar to a car, the agent has an orientation and momentum, so that it can
drive straight, or in a right or left curve. The agent reappears on the opposite side of the map if it exits one side.
The distance to three markers are provided as features ϕ ∈ R3. Rewards depend on the distances r =

∑3
k=1 rkϕk ,

where each component rk has one or two preferred distances defined by Gaussians. We evaluated the agent on
37 sequentially learned tasks by using the GPI transfer procedure between tasks. For each tasks, a random reward
function is generated where the number of Gaussians and their properties (µ, σ) are randomly sampled for each
feature dimension. Fig. 5.2 (a) shows a reward function where dark areas depicting higher rewards. The state space
is a high-dimensional vector s ∈ R120 encoding the agent’s position and orientation. The 2D position is encoded by
a 10× 10 grid of two-dimensional Gaussian radial basis functions. Similarly, the orientation is also encoded using 20
Gaussian radial basis functions.

(a) Racer Environment (b) Average return per task over environment steps
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Figure 5.2: (a) Example of a reward function for the racer environment based on distances to its 3 markers. (b) SFR-
learning reaches the highest average reward per task. SF-QL yields a performance even below QL as it is not able to
approximate correctly the reward function with its linear combination of weights and features. The average over 10
runs per agent and the standard error of the mean are depicted. TODO: only plot QL, SFQL and SFRQL
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Three agents were evaluated: 1) Standard Q-Learning (QL) that uses no transfer of knowledge and learns every
task from scratch. The Q-function is approximated by a fully connected feedforward network with bias and a ReLU
activation for its hidden layers. It has 2 hidden layers with 20 neurons each. 2) The SF (SF-QL) procedure that assumes
a linear decomposition of rewards. As the reward functions are not able to be represented as a linear decomposition
of a weight vectorw and the features, an approximatedweight vector w̃was learned thatminimizes themean squared
error to the true reward function: ϕ⊤w̃ ≈ R(ϕ). SF-QL uses a feedforward network with bias and a ReLU activation
for hidden layers to approximated the ψ-function. It has for each action a separate fully connected subnetwork. Each
subnetwork has 2 hidden layers with 20 neurons each. 3) The SFR (SFR-QL) procedure which also uses a feedforward
network with 2 hidden layers and 20 neurons each to approximate the ξ-function for each action.

We evaluated each agent on 37 tasks for 10 runs per agent and compared their average return per task over the
environment interaction steps (Fig. 5.2 - b). SFR-QL reached the highest performance of all agents outperforming
QL and SF-QL. SFQL reached only a performance below QL. SFQL is not able to approximate sufficiently well the Q-
function as their reward functions depend on a linear reward model which can not represent well the general reward
functions in this environment.

Conclusion

We developed SFR, an extension to the Transfer Learning frameworks of SR and SF. SFR allows to handle continuous
and high-dimensional state space in comparison to SR, and general reward function in comparison SF. Our preliminary
experiments in a simulated environment showed its advantage over the SF framework, and traditional non-transfer
RL. In future experiments, we will investigate its application to relevant social robotic tasks for SPRING.

5.1.3 Radial-Basis-Function Layers for Variational Meta Learning

(Contributor: INRIA)
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Figure 5.3: Graphic visualization of the posterior collapse
of PEARL. (left-top) The ground truth task representation,
where each task corresponds to a coloured dot. The three
primary colors correspond to the strength of each of three
reward component weights. (left-bottom) PEARL’s learned
task representation uses only one dimension (z1) and ex-
hibits posterior collapse in the two other dimensions (z2
and z3). (right) As a result, PEARL’s learning performance
compared to a task conditioned policy using the ground
truth (Oracle) is reduced. The proposed RBF-PEARL aims
to close this gap by mitigating the negative impact of pos-
terior collapse during training.

Additionally to the SFR framework, we investigated [3]
task conditioned policiesmethods to reduce the amount
of needed data when iteratively searching for an appro-
priate reward function. Task conditioned policies are a
Meta-RL approach able to adapt to new tasks, i.e. reward
functions, using only few observations. These methods
learn a meta-policy, that is conditioned on a latent vector
representation z of a task. How to represent tasks and
solve them is learned on a set of source tasks. Given
a new target task, a small amount of observations are
collected to compute its task representation and to con-
dition the meta-policy to it. The idea is to learn the meta-
policy before searching for a specific reward function on
the real robot in simulation. The procedure can also be
used to adapt the robots behavior quickly to new envi-
ronments. For example, a social robot might be used to
navigate in a care center for elderly or an office. In the
care center the robot should avoid getting too close to
people to avoid that they feel unsafe. Whereas, in an of-
fice environment this restriction might be less important
and the robot could move closer around people to reach
its goal position faster. Being able to adapt a robot be-
havior, i.e. the reward function and its resulting behavior,
quickly to the specific needs of a certain new environ-
ment is essential for the practical application of social
robotics.

A promising research direction for task conditioned polices are variational architectures [22], such as PEARL [39].
Instead of learning a deterministic representation of tasks, PEARL learns to represent themvia a distribution, exploiting
the flexibility of probabilistic models and the representation power of deep neural networks. We investigated the
usability of such variational meta-RL frameworks for social robotic tasks [3], and realized that the learned encoder
suffers from posterior collapse resulting in a reduced learning performance (Fig. 5.3). We propose to use a radial
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basis function (RBF) layer [5] to transform the task representation before giving it to the downstream task conditioned
policy, thus constructing an embedding that is more suitable to represent tasks. RBF networks are universal function
approximators [33] whose parameters can be learned, and exhibit interesting results in classification tasks [9, 36, 64]
as well as in value-learning for continuous action DRL [2]. In the following, we first discuss work related to our topic
andmethods, then introduce ourmethodology, to finally present experimental results for two simulated social robotics
tasks.

Background

In this work, we would like an agent to adapt quickly to a new reward function using only a few observations. We
formalize this problem as ameta-RL problem. Each reward function represents a task τ ∈ T with τ = {R(st, at, st+1)}.
We assume a distribution ρ(τ) over the task. We differentiate twometa-learning phases: 1) meta-training and 2) meta-
testing. During meta-training, a number of training tasks is sampled according to ρ(τ). Based on these training tasks,
a task conditioned policy π(a|s, τ) is learned. During meta-testing, a different set of test tasks is sampled from ρ(τ)
and the adaptation of the learned policy to these tasks is measured.

We chose PEARL [39] as our meta-RL algorithm. PEARL learns a task-conditioned policy π(a|s, zτ )where zτ ∈ Z =
Rd is a low-dimensional task representation. The task representation zτ conditions the policy towardsmaximizing the
return of the reward function for task τ . The representation zτ = f(cτ ) is computed based on observed transitions
from a task, called the context cτ = {cτn}, where cτn = (sn, an, rn, s

′
n). PEARL uses a variational method, similar to

variational autoencoders (VAEs) [22], to estimate the posterior distribution of the low-dimensionsal representation
given the context p(z|c). It approximates the posterior with an inference network qϕ(z|c) parametrized by ϕ. The
network is trained on a log-likelihood objective resulting in the following variational lower bound:

Eτ

[
Ez∼qϕ(z|cτ ) [R(τ, z) + βDKL(qϕ(z|cτ ))∥p(z))]

]
(5.17)

where R(τ, z) is the return for task τ using the policy conditioned on z and p(z) is a standard Gaussian prior over z.
The inference network is a product of independent Gaussian factors for each transition in cτ :

qϕ(z|cτ ) ∝
N∏

n=1

N
(
fµϕ (c

τ
n), f

σ
ϕ (c

τ
n)
)

(5.18)

where fµϕ and fσϕ are represented by a neural network.
Duringmeta-training, the policy π(a|s, z) is learned using the soft actor-critic (SAC) [19] algorithm. SAC is off-policy,

consisting of an actor πθπ (a|s, z) and a critic QθQ(s, a, z) network. PEARL jointly trains the inference, actor and critic
networks using the reparameterization trick similar to VAEs [22]. During a meta-training step, the training procedure
has two phases: 1) data collection and 2) network parameters update. In the data collection step, a replay buffer Bτ is
filled with the transitions fromK trajectories for each training task τ . Then, for each trajectory PEARL samples a task
representation z ∼ qϕ(z|cτ ) to condition the policy where cτ is sampled from the replay buffer Bτ . During the second
phase, the procedure updates the network parameters for each training task τ . It first samples a batch of context
cτ from recently sampled transitions in the replay buffer Bτ . Then, the task representation z ∼ qϕ(z|cτ ) is sampled
from the posterior distribution of z given the context cτ . The critic and actor networks are updated using the task
representation and independently sampled transitions from the whole replay buffer. The loss of the critic is given by:

Lcritic = E(s,a,r,s′)∼B
z∼qϕ(z|c)

[
Qθ(s, a, z)− (r + V̇ (s′, ż))

]2
(5.19)

where V̇ is the value, i.e. the maximum Q-value, of a target network, and ż indicates that gradients are not being com-
puted through it. A target network is necessary here because directly implementing Q learning with neural networks
proved to be unstable in many environments [32]. The actor loss is given by:

Lact = Es∼B,a∼πθ

z∼qϕ(z|c)
[log(πθ(a|s, ż)− (Qθ(s, a, ż))] (5.20)

The loss of the inference network for the task representation is composed of the critic loss and the Kullback–Leibler
divergence term from (5.17):

Lϕ = E(s,a,r,s′)∼B
z∼qϕ(z|c)

[Lcritic + βDKL(qϕ(z|cτ ))∥p(z))] . (5.21)

For meta-testing, a test task τ is first explored for a few hundred time steps. The policy πe(a|s, ze) used for ex-
ploration is conditioned on a task representation sampled from the Gaussian prior ze ∼ p(z). After the exploration
phase, the context cτ collected with πe is used to compute the final task representation given by the sample mean of
the posterior mean: zτ = 1

N

∑N
n=1 f

µ
ϕ (c

τ
n). More details on the meta-testing phase are provided in the experimental

section.
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Figure 5.4: PEARL-RBF Architecture. The proposed meta-RL procedure learns to adapt to unseen test reward func-
tions. The context encoder uses data from the replay buffer to infer the posterior over the latent context variable z.
The latent context sampled from the posterior z = (z1, . . . zd) is then fed to the RBF network, which uplifts every input
dimension m to a different k-dimensional representation: zm → (z̃m,1, . . . , z̃m,k). The resulting task representation z̃
is used to condition the actor and critic network.

Method: RBF-PEARL

We noticed that in several scenarios PEARL suffers from posterior collapse of the learned task representation z. As a
result, not all dimensions of z are used. The task information is compressed in few dimensions making it difficult for
the downstream policy and critic network to learn from z. To compensate for this, we propose to transform the task
representation z̃ = φ(z) to a representation that is easier to process for downstream networks. Inspired by [2, 9], we
propose the usage of radial basis function (RBF) layers to transform the task representation.

We construct the RBF layer (Fig. 5.4) based on the idea of RBF networks [5] which are universal function approxi-
mators [33]. RBF networks consist of a layer of hidden neurons that have a Gaussian activation function. The output
of the networks is a weighted sum over the Gaussian activations. In a similar manner, our proposed RBF layer consist
of a layer of neurons. For each input dimension zj ∈ R from the original task representation exist N RBF neurons:
z̃j,1, . . . , z̃j,N . Each neuron represents a radial basis function having a Gaussian shape:

z̃i,j = exp
(
−δi,j ||zi − ci,j ||2

)
, (5.22)

where δi,j ∈ R is a scaling factor and ci,j ∈ R is the center, i.e. the point of the highest activation. δ and c are the
parameters of the RBF layer which can be either fixed or trained using gradient descent based on the loss function of
downstream networks.

In summary, we propose to transform the task representation using a RBF layer: z̃ = φ(z). The resulting represen-
tation is then given to the task conditioned actor πθ(a|s, z̃) and critic Q(s, a, z̃) network.

Experimental Results

We evaluated our approach on three different environments of which we report here results on two that are inspired
from social interaction situations. See [3] for the results of all environments.

In the first environment, the agent, represented by a robotic head, needs to learn how to control its position follow-
ing different criteria (e.g. maximizing the number of people in the field of view or facing the speaker). In the second
environment, the agent must learn to navigate safely and in a socially-compliant manner through a crowd of people.
First we want to show the effectiveness of our proposed methodology to generate different behaviors in human robot
interaction tasks. Secondly, we assess whether or not the use of RBF layers is beneficial for variational meta-RL in
terms of training and adaptation efficiency.

Baseline The most natural baseline to the proposed RBF-PEARL is standard PEARL. However, directly comparing
with PEARL seems unfair, since adding RBF layers increases the number of parameters of the actor and critic net-
works. We therefore adjust the number of parameters of the actor and critic networks of the PEARL baseline so as
to match the number of parameters of the RBF-PEARL. Beyond this adjustment, both methods use separated actor
and critic networks, and both networks consist in a 3-layers MLPs with 300 neurons per layer. Both methods use a
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3-layer MLP with 200 neurons per layer as encoder. In more details, if the latent dimension is d, and we use one RBF
layer with k neurons, the first layer of the actor/critic networks would have 300d and 300kd parameters for PEARL
and RBF-PEARL, respectively. For the sake of a fair comparison, we add an extra layer at the beginning of PEARL’s
actor/critic network with kd output neurons, thus yielding the number of parameters of PEARL and RBF-PEARL actor
and critic networks comparable. Unless otherwise stated, we use k = 9.
As a separate baseline, we used a modified version of the soft actor critic algorithm. We trained one agent per tasks,
using only 200 observations. However we strongly increased the numbers of gradient step performed per obser-
vations in order to force the network to learn a behavior with only this 200 observations. We used this baseline to
compare the performances classical RL algorithms (here SAC) trained on 200 observation can reach with respect to
RBF-PEARL and PEARL with 200 adaption steps. We except the performances of these agents trained with soft actor
critic algorithm to be lower than the performances of PEARL and RBF-PEARL.

Evaluation protocol For meta-training, we sample 100 tasks for the three environments. Evaluation is performed
on 20 meta-testing tasks that are different from those used at meta-training time. To evaluate on each meta-testing
task τ , we collect 200 time steps with a task representation ze sampled from the standard Gaussian prior. Then we
aggregate this 200 time steps to compute a task representation zτ sampled from the posterior estimation given by
the encoder. To compute the final test-time performance, we record the performance of the policy associated to the
task representation zτ for one episode. We repeat the training process 5 times, and report the mean performance and
the associated standard error.

Gaze control Environment Inspired by recent research in RL for social robotics [26] to design this environment, where
we aim to learn a gaze control strategy for a robotic head. In our setup, the robot observations aremultimodal consist-
ing of visual, auditory, and proprioception cues. To this end, we assume normalized scene coordinates of size 2× 1.
Regarding the visual observations, we assume a regular head camera that extracts pose cues from the 0.4× 0.3 field
of view (FoV). In more detail, we assume that a multi-person pose estimation method is available, and provides one
heatmap for each of the J = 18 landmarks (e.g. nose, neck, left shoulder, right hip). The heatmap associated to each
landmark indicates the probability of the presence of that landmark at every position. Since state-of-the art pose esti-
mators provide these heatmaps in low resolution, the visual observations will consist on J 7×7 heatmaps. Regarding
the auditory observations, we emulate the output of a sound source localization algorithm. Given the precision of
current sound source localization methods, it seems reasonable to represent the auditory input as a 14× 8 heatmap
corresponding to the entire scene. Each of its cells corresponds to the probability of having an active speaker in this
direction. Importantly, while the visual features correspond to the current field of view of the camera, the auditory
features correspond to the entire scene, since audio localization is not limited by the camera’s FoV. Lastly, the propri-

(a) Gaze control task (b) Results of the Meta-Adaptation
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Figure 5.5: (a) Illustration of the gaze control environment. The field of view is shown in red, the active speaker in
purple, and the visible/non-visible landmarks are shown in white/color respectively. (b) RBF-PEARL also outperforms
PEARL in the test-task performance vs. samples collected during meta-training on the non-linear family of reward
functions on the gaze control environment.
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oception cues consist of the coordinates of the robots current field of view center. It is encoded using a R2 vector
representing both the pan and tilt angles of the robotic head, defining to which part of the scene corresponds the
visual input. An observation of the gaze control environment is shown in Figure 5.5 (left).

Regarding the action space of the agentA, we set it to [−1, 1]2,corresponding to the pan and tilt angular velocities,
respectively. We choose to normalize the action space so as to stabilize the network learning. The maximum pan and
tilt velocities correspond to shifting the camera field of view by 0.16 and 0.11 in normalized scene coordinates at every
time step respectively.

We define three reward components that will be combined to generate various tasks (i.e. reward functions). Wewill
focus on the number of people in the field of view, the presence of a speaker in the field of view, and reducing spurious
robot movements. These three components are very generic, and relevant for any social robot. The dimension of the
latent space of both PEARL and RBF-PEARL is set to d = 3.

We want to reward the robot for having people in the field of view of the camera, since this means the robot would
be looking at people. Naively reward the number of peoplewithin the field of view leads to an action policy that explores
until finding a person, and then follows the person. Amore natural behavior is to check on previously detected people.
We therefore propose to use a visual reward component that depends on the last time the agent saw a person. More
precisely:

Rvis =
∑

p∈Pvis

2− exp(−tp) (5.23)

where Pvis is the set of people whose face is in the visual field of view and tp ∈ [0,∞] is the time since the person
was last seen (before the current frame). When a person keeps on being in the field of view, the reward is close to 1.
When a person not seen for long time reappears in the field-of-view, the reward is close to 2. In this way, the desired
behavior is encouraged.

Regarding audio, we would like the robot to look at the speaking person(s), and therefore we define the audio
component of the reward function as:

Raud =


0 Nobody speaks
−0.5 Speakers are outside the FoV
2|Paud| Speakers within the FoV

(5.24)

where Paud is the set of speakers in the field of view.
Finally, we would like to penalize large and fast movements since they are quite unnatural in social interactions.

This is why we propose a movement (negative) component of the reward function, defined as:

Rmov = −Kmov

√
a2pan + a2tilt (5.25)

where apan and atilt are the two components of the action space, andKmov = 16 is a constant to putRmov in a similar
numeric range as Rvid and Raud.

In order to construct different tasks (reward functions) we propose to use the defined components in two different
ways. First, with simple combinations as in [26], and then with more complex ones (i.e. non-linear). The first family of
reward functions is generated by sampling convex combinations of the three components defined above:

Rτ = ωτ
visRvis + ωτ

audRaud + ωτ
movRmov , (5.26)

where ωτ
vis, ω

τ
aud, ω

τ
mov ∈ [0, 1] are random convex weights, meaning that ωτ

vis + ωτ
aud + ωτ

mov = 1.
We also wanted to compare the algorithms in more complex environments. To that aim, we design our second

family of reward function using random multi-layer-perceptron (MLP) networks. These input the value of the three
reward components defined above. The MLPs have 1 to 3 layers with 4 to 6 neurons each, that are activated with a
sigmoid with probability 0.75. The number of layers, the neurons per layer, the activation and the weights are sampled
randomly. Formally, we write:

Rτ = fτ (Rvis, Raud, Rmov;W
τ ) (5.27)

where fτ represents the sampled MLP network with sampled connection weightsW τ .
We report the average return over the set of meta-testing tasks over the met-training iterations (Fig. 5.5 - b). More

precisely we plot the average return mean and standard deviation over the five independent runs, for the gaze control
environment with convex (top) and non-linear (bottom) combinations of reward components.

Generally speaking, both PEARL and RBF-PEARL are able to provide a better adaptation starting point with the
training progress. In addition, we observe that RBF-PEARL has a steeper learning curve than PEARL on both types of
reward functions. More precisely for convex combinations of reward components, RBF-PEARL performs comparably
to PEARL during the first 400k steps. From this point on, RBF-PEARL systematically outperforms PEARL by amargin of
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20-30. For the non-linear combinations of reward components, RBF-PEARL exhibits superior performance from 600k
meta-training steps on, by a margin of roughly 50. Overall, on these two families of tasks RBF-PEARL is faster than
PEARL and has better asymptotic performance, thus show-casing the benefit of using the RBF layer. As excepted,
both PEARL and RBF-PEARL achieves better performances than the batch of agents trained using the soft actor critic
algorithm with only 200 observations (SAC 200). In the Linear Gaze Control environment, the average performances
reach by agents trained with the soft actor critic algorithm is inferior to the performances of PEARL and RBF-PEARL
by a margin of 100. In the Non-Linear Gaze Control environment, the gap is lower between PEARL and SAC 200 as
PEARL outperforms SAC 200 by a margin of 50. With RBF-PEARL, the gap of performances with SAC 200 is more
significant as RBF-PEARL exhibits superior performance by a margin of 130.

Social navigation environment For this task, we took inspiration from social group and crowd navigation tasks
[10, 71]. We propose to learn a navigation strategy for a mobile robot. Our simulation environment is an empty room
of dimension 15 × 10 m. The room is populated with five human agents, whose position at the beginning of each
episode is randomly initialized, see Figure 5.6. Likewise, we randomly sample a robot goal position at the beginning
of an episode. The robot should reach the goal position before the end of the episode without disturbing the human
agents. In our setting, each human agent is given a random goal position. During an episode the human agent will go
towards the goal position and will be assigned a new one after reaching the original goal. To simulate the behavior of
human agents, we model the human agents’ motion using a social force model [35] to generate plausible trajectories.
This framework also limits the amount of collision between human agents. In our setup, the robot has access to the
coordinates of all people in the scene, their velocities and their orientations. The robot also has access to its own
velocity, coordinates and goal position. While the robot always begins the episode at the same position (coordinates
(14, 5)), its goal position is randomly sampled following x ∼ U(0.0, 2.0) and y ∼ U(0.0, 10.0), for the x and y coordi-
nates respectively. Lastly, the action space is a continuous two dimensional space set to [−15, 15] × [−2, 2] , which
corresponds respectively to the angular velocity and linear velocity. The maximum value of the linear and angular
velocity are chosen such that the robot can go as fast as any human agent in the scene. In this environment, we use
a smaller number of neurons k = 5 for our RBF-layer.

We define a set of five reward components that will be combined to generate various tasks. The dimension of
the latent space of both PEARL and RBF-PEARL is set to d = 5 for this environment. First, the goal component Rg is
designed to reward the agent for reaching the goal position:

Rg = 1− d(r, g)

D
(5.28)

where d(r, g) is the distance between the robot and the goal and D is a normalizing factor to guarantee that the goal
component stays within [−1, 1].

(a) Social navigation task (b) Results of the Meta-Adaptation
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Figure 5.6: Schematic representation of the social navigation environment. The robot Rmust move towards its goal
position while navigating around five human agents (A, . . . , E). Results on the social navigation environment. After
6 millions steps, RBF-PEARL outperforms PEARL in the test-task performance vs. samples collected during meta-
training on the family of reward functions corresponding to the social navigation environment.

D6.5: Final Neural Network Architectures Page 26 of 37



This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 871245.

Second, the collision component Rc is built to penalize collisions between the robot and human agents:

Rc =

{
0 d(r, hi) > dc

−1 d(r, hi) < dc
(5.29)

where d(r, hi) is the distance between the robot and the human agent i and dc is the collision threshold between the
robot and the human agent.

Third, the social component Rs is designed to reward the robot in maintaining a safe distance from all human
agents. The social component depends on the distance between the robot and each of the human agent. If the
distance between the robot and one of them is below a certain threshold, the robot will be penalized. The closer the
robot is to the person, the higher the penalty will be. If the robot is close to more than one human agent, only the
closest person to the robot is taken into consideration (that is to say the human agent that will generate the lowest
reward):

Rs = min
i

[
d(r, hi)

ds
− 1

]
(5.30)

where d(r, hi) is the distance between the robot and the human agent i and ds can be understood as a threshold.
Indeed, if the minimum distance between the robot and a human is below ds, the reward becomes negative. Thus, ds
can be seen as the distance at which the robot enters the comfort zone of people.

Fourth, the approach component Ra is designed to reward the robot for positioning itself so as to avoid making
other humans agents aware of it. This component is inspired from the literature in social robotics, see [41]. In this
paper, the authors tried to quantify how aware people are of a robot when it approach them. They use the relative
positions and orientations of the robot and the human agent to evaluate the awareness of the robot by the human. In
our approach, we want to minimize the distraction created by the robot when it navigates. Therefore we are trying to
minimize the awareness of the robot by the human agents in the scene. We compute the awareness of the robot by
each human agent and use this as our approach component by rewarding low awareness of the robot. The approach
component is defined for each human agent. It is a combination of visibility and direction. While the visibility assesses
howmuch visible the robot is for the human agent, the direction assesses if the robot is going in a direction that would
make the human agent more aware/afraid of it.

The visibility for human agent i is defined as :

Rvisible,i =

{
1− θi,r

θth
θi,r < θth

− θi,r−θth
π−θth

otherwise
(5.31)

where θth is a threshold angle from which the robot is visible to the human agent and θi,r is the angle of the robot
relative to the human agent imotion. If the robot is in front of the human agent, the value will be close to 1, and if the
robot is in the back of the human the value will be close to −1. The direction for human agent i is defined as :

Rdirection,i =

{
1− θr,i

π/2 θi,r < θth

1 otherwise
(5.32)

It is designed to address how the human agent perceives the robot coming towards him. If the robot is coming closer
to the human agent, he/she will becomemore aware of it and be distracted by it. On the other hand, even if the robot is
visible to the human agent, if it moves away from him/her, it will be less likely that the human agent will be distracted
by the robot. To compute the approach reward component, we compute the minimum over the visibility/direction
product, over the human agents:

Ra = min
i
Rvisible,i ·Rdirection,i (5.33)

Fifth, the velocity componentRv is designed to penalize the robot for going too fast when it is in front of people. It
is preferable to avoid having the robot being fast in front of people as they may be disturbed or even afraid by it. Thus
we define a velocity component which penalizes the robot for fast-moving if it is visible to other human agents in the
scene. The velocity component for each human agent i is defined as:

Rv,i =

{
−ev(1− θi,r

θth
) θi,r < θth

0 otherwise
(5.34)

where θth is a threshold angle from which the robot is visible and θi,r is the angle of the robot relative to the human
agent motion. To compute the reward component we take the same methodology as with the social and approach
component, that is to say that we choose the minimum value obtained from all the human agents in the scene:

Rv = min
i
Rv,i (5.35)
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In order to evaluate the meta-RL algorithms in this setting, we propose to test it with convex combinations, as in
the gaze control environment. This social navigation environment is more challenging because the higher number of
reward componentsmakes it more difficult for the learning process, and for the behavior generation as there is a wider
variety of possible reward functions. Thus our family of reward functions is generated using convex combinations of
the five components defined above:

Rτ = ωτ
gRg + ωτ

cRc + ωτ
sRs + ωτ

aRa + ωτ
vRv (5.36)

where ωτ
g , ω

τ
c , ω

τ
s , ω

τ
a , ω

τ
v ∈ [0, 1] are the randomly sampled convex weights leading to task τ , meaning that ωτ

v + ωτ
c +

ωτ
s + ωτ

a + ωτ
v = 1.

In Figure 5.6, we report the average return over the meta-testing tasks with the progress of the meta-training for
PEARL and RBF-PEARL. As in the previous environment, we report mean and standard deviation over five runs. Simi-
larly to the previous case, the performance of the two methods look similar during the first steps of the training. More
importantly, the RBF layer seems to have a positive impact on the asymptotic performance. Indeed, after 6 million
steps, the RBF-PEARL algorithm performs better than PEARL. Similarly to the gaze control environment, both PEARL
and RBF-PEARL perform better than SAC-200 by a large margin (170).

Conclusion

In this exploratory study, we investigated the use and limitations of variational meta-RL for social robotics. We showed
that meta-RL successfully learns to adapt quickly (within 200 steps) to different reward function formulations which
can help to identify the reward function that describes a wanted social behavior faster. Nonetheless, state-of-the-art
methods exhibited a posterior collapse in our task, which is problematic in meta-RL since the encoder is supposed
to accumulate information for better generalization, and collapsed encoding dimensions cannot do so. We started
investigating how to mitigate posterior collapse in variational meta-RL by adding a RBF layer after each encoded
dimension. Our algorithm improves the performances of meta-RL algorithm for reward design in social robotics. Our
RBF layer improves asymptotic performances of the PEARL algorithm in several different environments, all inspired
of social robotics tasks. The PEARL algorithm learns a sub-optimal representation of the task. While we do not solve
this issue, the RBF-PEARL algorithm mitigates the effect of this sub-optimal representation, providing the actor and
critic network with a different representation of the task using the dimensions of the task representation that do not
suffer of posterior collapse.

5.2 Co-Speech Gesture Generation

(Contributor: INRIA)

We investigated a neural architecture for the generation of upper body gestures for ARI (movement of arms and head)
during conversations. The architecture takes as input the utterances that ARI will speak in text form and generates
the movement of ARI’s joints. The architecture is based on a Generative Adversarial Network (GAN) [61] model and
trained on recorded video data from humans giving talks during TED conferences [62].

Method

Our architecture is based on a Generative Adversarial Network (GAN). GANs are composed of two parts. 1) A Gener-
ator network that generates the target output (upper body joint positions) for a given input (utterance as text). 2) A
Discriminator network that learns to identify if a given gesture is either artificially generated or a real recorded gesture.
The goal of the Generator is to fool the Discriminator that its outputs are real whereas the Discriminator tries to identify
the generated data. As a result the Generator learns over time to generate more and more realistic gestures. Our GAN
model is based on the architecture by [61]. In difference, our architecture receives as input only the text of the speech,
but no audio recordings. Moreover, the text encoder in our architecture is replaced by a pretrained Transformer model
based on [58]. Besides these changes we also performed ablation studies introducing Transformer decoder layers
that replace the GRU layers of the Discriminator and the Generator in [61]. We differentiate between both versions as
the GRU network (gru), Fig. 5.7, and the Transformer network (trans), Fig. 5.8.

Generator Network The generator network takes three inputs per data sample: a) The spoken text as a string. b)
The initial poses of the speaker. These represent the joint poses of the previous 4 time frames, so that the goal is to
generate poses that continue from these. Poses are represented as directional vectors representing relative positions
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of child joints from parent joints. Each pose encodes 9 joints where each joint is represented by a 3D vector (p ∈ R27).
c) The ID (∈ N) of the speaker which is used to compute a style embedding to reflect inter-person variability.

Both networks (gru and trans) use a pretrained sentence encoder1 to process the spoken text. The encoder is based
on the Transformer architecture in [58]. It outputs a sequence of sentence embeddings of variable length L where
each embedding is a 384 dimensional vector (fsentence ∈ RL×384). For the GRU network the sequence is averaged over
its length L to have a fixed size input for its GRU units using a pooling average procedure. The averaged embedding is
given at each computational step to the GRU network. The Transformer network takes the full sequence of sentence
embeddings as memory input.

The GRU network receives for its first four computational steps the initial pose as an input with an additional bit
input b ∈ R set to 1 that encodes that the input sequences are initial poses. Afterward, it receives for each generated
pose p̂ an input pose p where all values are zero. In this case, the bit input is zero. The Transformer network receives
all positions (initial ones and zero vectors) and the bit information as vectors.

Finally, both networks receive as input a style embedding fstyle which is learned by a variational network. It receives
the speaker’s ID as a one-hot vector. A set of fully connected layers maps the ID to a style embedding space fstyle ∈
R16. The network uses a sampling process similar to VAEs to learn the style mapping.

The Transformer network receives as additional input a positional encoding for each of the 34 input poses. The
positional encoding follows the standard formulation for Transformers with an additional drop-out layer at the end.

The GRU network consists of 4 bidirectional GRU layers on top of each other, followed by two fully connected
layers. The first has the same dimension as the GRU layer’s output, and the second a size half of the dimension as
the GRU layer’s output. We evaluated different sizes for the output of the GRU layers. The Transformer network has 6
layers of Transformer decoder blocks with 8 heads and feedforward network models of dimension 1024. As the GRU
network, it is followed by two fully connected layers. Both networks generate an output of T = 34 poses where the
first four poses are the initial poses. The loss is defined by:

LG = α · LHuber
G + β · LNSGAN

G + γ · Lstyle
G + λ · LKLD

G (5.37)

See [61] for an explanation of the individual loss terms.

Discriminator Network The Discriminator takes as input poses, either generated by the encoder or sampled from
the recorded dataset. It outputs a scalar (R1) which encodes if the input is either artificially generated or comes from
a real recording. The GRU version of the discriminator has three 1D convolutional layers followed by 4 GRU layers with
varying sizes of their output dimensions. As the Generator, it has two fully connected layers on its top. The first has
the same dimension as the GRU layer’s output, and the second a dimension of 28. The Transformer network consists
of 5 blocks of Transformer decoders with 3 heads and feedforward networks of dimension 128. As the GRU network,
it is followed by two fully connected layers. Additionally to the poses, the Transformer network receives as input a
positional encoding similar to the generator network.

The model is trained following the generator/discriminator update procedure, i.e. one update step for the discrim-
inator followed by one update step for the generator. The discriminator loss is defined by:

LD = −E[log(D(d))]− E[log(1−D(d̂))] (5.38)

where d is the output of the discriminator and d̂ is the ground truth if the input is either generated or real.

Experiments

We trained our proposed network model under various conditions (Table 5.1) on data of recorded gestures of human
speakers from TED talks [62].

Experimental Procedure

The dataset is split in a training, validation, and test set with 200k, 26k, and 26k samples accordingly. Each sample
consists of the spoken text during a 2 second audio recording and the corresponding upper body poses of a human
speaker. Poses were recorded with a frame rate of 15Hz. Additionally, 4 poses before the start of the spoken text were
recorded which are given to the networks so that their generated poses continue from these. As a result, each text
sample has T = 34 corresponding poses.

Each training lasted for 300 epochs with a batch size of 512. An Adam optimizer with β1 = 0.5 and β2 = 0.999was
used. The learning rate was set to 5.e−4 for the generator and 1.e−5 for the discriminator. We evaluated our models
for different generator and discriminator dimensions, and different weights (α, β, γ, δ) of the loss terms (Table 5.1).
As these results are preliminary evaluations, each model was trained for a single random seed.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 5.7: Architecture of our gesture generation architecture using GRU layers.
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Figure 5.8: Architecture of our gesture generation architecture using Transformers.
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Table 5.1: Settings and results for some of the preliminary evaluated gesture generation models.

Model Gen Dim Dis Dim α β γ λ Epochs ↓ MAEJ ↓ FD ↓ FGD ↓
[61] 300 300 500 5 0.05 0.1 85 0.0262 59.06 3.45
gru 1 560 560 100 0.1 0.05 0.1 241 0.0308 66.24 1.62
gru 2 512 512 100 0.1 0.05 0.1 245 0.0300 65.43 1.63
gru 3 300 300 50 1 0.01 0 45 0.0313 66.09 2.58
gru 4 1024 1024 100 1 0.05 0.1 76 0.0315 66.68 2.03
trans 1 1024 128 100 0.2 0.05 2 126 0.0290 65.20 2.96
trans 2 1024 128 100 0.2 0.05 0.5 93 0.0280 64.54 2.97
trans 3 1024 128 100 0.2 0.05 0.2 90 0.0300 66.41 2.94

Results

Ourmain evaluationmetric is the Fréchet Gesture Distance (FGD), as done in [61]. It is inspired of the Fréchet Inception
Distance (FID) used in the image generation domain. It calculates the Fréchet distance between the distributions of
real and generated gestures in a latent feature space. The latent feature space is computed by a autoencoder that
was trained to recreate input poses. We use the pretrained autoencoder from [61]. The FGD(X, X̂) is defined as the
Fréchet distance between the Gaussian mean and covariance of the latent features of human gestures X and the
Gaussian mean and covariance of the latent features of the generated gestures X̂ :

FGD(X, X̂) = ||µr − µg||1/2 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)

(5.39)

where µr and Σr are the mean and variance of the latent feature distribution Zr of real human gestures X , and µg

and Σg are the mean and variance of the latent feature distribution Zg of generated gestures X̂.
A second evaluation metric is the Features Distance (FD) which is the mean average error between the latent

features of the ground truth and the generated gestures:

FD(X, X̂) = ||µr − µg|| (5.40)

The final evaluation metric is the mean average error of joint coordinates (MAEJ) between the ground truth poses
P̂ and the generated ones P :

MAEJ(P, P̂ ) =
1

D + T +N

D∑
i=1

T∑
j=1

N∑
k=1

pijk − p̂ijk (5.41)

where i iterates over data samples, j over poses in one sample, and k over the individual joints.
We report the FGD, FD, and MAEJ for the test set (Table 5.1). The MAEJ and FD are for the model parameters that

resulted in the best FGD according to the validation set. Epochs denote the number of epochs before the best FGD per
model was found. We compared our models to the model by [61]. Please note that this model also takes as input the
audio recording which ours do not. All our proposed models obtain a better FGD, ranging from 1.62 to 2.97 compared
to 3.45. For the MAEJ the original model yields a slightly better results of 0.026 compared to our models, ranging from
0.028 to 0.032. Also for the FD the original model achieved a better result of 59.1, compared to our models, ranging
from 64.5 to 66.9. These results show that our models, are worse in regenerating the exact movements for a given
ground truth (MAEJ, FD), but they are better in capturing natural motions which is better measured by the FGD ([61]).

Comparing the GRU (gru 1,2,3,4) with the Transformer (trans 1, 2, 3) models shows that the Transformer layers do
not result in an improvement for this task. Their FGD is larger with 2.94 (trans 3) compared to 1.62 (gru 1), while the
MAEJ (0.03 compared to 0.031) and FD (66.4 compared to 66.2) are similar. We could only observe that the learning
process wasmore stable with the Transformer networks compared to the GRU networks, which often had dips in their
loss over the course of learning.

Conclusion

We introduced a deep neural model for the generation of gestures. Our model takes as input the spoken text and
ouputs a sequence of joint positions. Our model outperforms its succesor from [61] in terms of FGD by introducing
a Transformer model for the encoding of the text sentence. Replacing its GRU units with Transformer layers did
not result in a improved performance. The current results are still preliminary and we will evaluate further possible
architecture variations and hyperparameters to improve the generation of gestures. Furthermore, we will evaluate the
performence of the generated gestures on the physical robot.
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6 Conclusion

In this deliverable we listed and described various deep architectures and their training procedures that were devel-
oped and integrated for the SPRING project. Their tasks range from the visual perception of humans, analysis and
understanding of their utterances, generation of dialog, to the behavioral control of ARI. Besides their task variety, the
developed networks also have various architectures, ranging from simple fully connected feedforward architectures,
convolutional architectures, recurrent architectures such as GRU, to Transformers. The SPRING project proves to be
a successful seedbed for new ideas and architectures in deep learning.

Please note, the current document provides only a snapshot of our current development of deep architectures. We
will further investigate and improve upon the here discussed architectures throughout the SPRING projects life time.
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