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Executive Summary

This deliverable, namely, D4.3 is part ofWP4of theH2020SPRINGproject. Themain aimof this document is to present
the first prototype implementation of tools for (a) single target behaviour recognition and (b) group-level behaviour
analysis. Additionally, we also present an audio-based emotion recognitionmethod, which can further bemerged with
behaviour recognition models in order to understand the behaviors and emotions simultaneously.

Regarding single task target behaviour recognition, this document includes the description of a novel method,
which performs unsupervised domain adaptation as well as presenting a new spatial transformer. The results tested
on several action recognition datasets, confirm the effectiveness of this method. The code is available in: https://
gitlab.inria.fr/spring/wp4_behavior/non-integrated-contributions/single_target_da_action_recognition.
git. This method will be integrated to ARI and tested on human-robot interaction scenarios as a future work.

We approach the group-level behaviour analysis, in this deliverable, from two perspectives: (a) gaze target de-
tection and (b) group detection. Gaze target detection is related to T4.1: Describing Humans since face detection
is performed within that task and the faces of person is input to the proposed method to further detect the gaze
target of that person. This module will predict the gaze target of each person in the scene captured by the head
camera of ARI. Gaze target detection is an important module to understand who is interacting with whom and con-
sequently, one can provide better group detection and group activity detection module. We present a novel mul-
timodal method to address gaze target detection, showing better results than the state-of-the-art. This method
was already integrated into ARI. It will be tested on wider set of scenarios for human-robot interaction as well as
will be tested on the dataset collected by the SPRING project. The gaze target detection code can be found in:
https://gitlab.inria.fr/spring/wp4_behavior/non-integrated-contributions/gaze-cnn.git.

Group detection stands for assigning people that were detected in the surrounding of ARI to conversational groups.
By correctly detecting groups, one can detect which group is interacting with ARI, identify the people ARI has to con-
sider to interact with. Moreover, group detection improves the human aware navigation as it allows to model group
spaces, which are used to navigate ARI to correctly join the groups and to avoid interrupting others while joining. As
a solution, SPRING partners use the Graph-Cuts for F-formation (GCFF) algorithm by Setti et al. [43].

The last but not the least, this deliverable also includes a speech emotion recognition (SER) algorithm which is a
variant of the system proposed in [19]. In the proposed scheme, the acoustic features are extracted from the audio
utterances and fed to a neural network that consists of convolutional neural networks (CNN) layers, bidirectional
long short-term memory (BLSTM) combined with an attention mechanism layer, and a fully-connected layer. The
proposed method is tested on publicly available datasets, showing promising results. The code can be found in:
https://gitlab.inria.fr/spring/wp4_behavior/non-integrated-contributions/ser.
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1 Contributions

1.1 Introduction

This deliverable D4.3 is part of WP4 of the H2020 SPRING project, targeting to present the result of T4.2: Individual &
Group Behaviour Recognition, while also utilising the results of T4.1: Describing Humans.

In this context we present:

• The first prototype implementation of tools for single target behaviour recognition (see Sec. 1.2),

• The first prototype implementation of tools for group-level behaviour analysis, which is addressed though gaze
target detection (see Sec. 1.3.1), integrating information about faces derived from visual data (T4.1: Describing
Humans),

• The first prototype implementation of tools for group-level behaviour analysis through proxemics features (Sec.
1.3.2)),

• The first prototype implementation for audio-based emotion recognition (Sec. 1.4). This can be further merged
with behaviour recognition models in order to understand the behaviors and emotions simultaneously.

1.2 Single-target Behaviour Recognition

In this document, we include the description and code of themethodwedeveloped for single-target domain adaptation
for action recognition. The details of this method is given in Sec. 1.2.1. We present our set of experiments in Sec.
1.2.2. Finally, we report our results in Sec. 1.2.2. The code of this approach is publicly available on GitLab1.

1.2.1 Proposed method

Our proposal tackles the problem of Unsupervised Domain Adaptation (UDA) for single-target action recognition.
Given a source dataset S = {XS

i , y
S
i }

NS
i=1 of videos and associated annotations, and an unlabelled target dataset

T = {XT
i }

NT
i=1, where Xi ∈ X and y ∈ Y , Y = {1, 2, . . . ,K} (K denotes the number of action categories), we aim to

learn a function Fθ : X → Y with parameters θ that maps an input video X to a class label y and perform well on the
target data. Note that this is not a trivial task, since source and target data are sampled from twodifferent distributions,
PS(X) ̸= PT (X). To handle this problem, we propose a novel approach that combines two main components: (a) a
spatio-temporal transformer architecture and (b) a novel distribution alignment scheme derived from the IBprinciple
[48].

An overview of our proposed method is shown in Fig. 1.1. We propose a two-stage training pipeline where the
model is first trained with source data and subsequently adapted using source and target data. Our model is defined
as Fθ = C ◦ H , where H represents a video transformer encoder [44] and C represents a linear classifier. H is
composed of twomain parts, a spatial transformerHs that extracts frame-level feature representations and a temporal
transformerHt that aggregates the frame-level features to produce video-level representations. In particular,Hs is the
vision transformer ViT [12], whereasHt is a simple multi-layer transformer as in [50]. An auxiliary MLP projection head
P is also used in the second stage. Finally, the complete model also has a queueQ that is responsible for keeping the
most recent feature representations of source data. The two main phases of our approach are described in Annex
3.1.

1GitLab repository: https://gitlab.inria.fr/spring/wp4_behavior/non-integrated-contributions/single_target_da_action_
recognition.git
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Figure 1.1: Overview of our method Our approach is articulated in two steps. In phase 1 (left), source data are fed to a
video transformer H (composed of a spatial transformer Hs and a temporal transformer Ht) followed by a classifier
C. The overall model is fine-tuned with a supervised cross-entropy loss LCE similarly to [32]. In phase 2 (right), the
weights of Hs are frozen, while Ht is fine-tuned. Source and target data are fed to the backbone and the proposed
IB-based loss LIB performs domain alignment, while LCE further trains the action classifier. A queue Q is added in
order to increase the number of source instances considered while computing LIB.

1.2.2 Experiments and Results

Datasets. We conduct an extensive evaluation of our approach on two benchmarks for UDA in action recognition,
namelyHMDB↔UCF [5] and Kinetics→NEC-Drone [6]. The former setting comprises videos from theHMDB51 [23] and
UCF101 [45] action recognition datasets, which both contain real videos downloaded from Youtube. In this case, the
domain shift is therefore present, but limited. Kinetics→NEC-Drone, consists of videos from the large scale Kinetics
dataset [4], that contains sequences from Youtube, and theNEC-Drone [6] dataset, which consists of video sequences
taken from moving drones in an indoor environment. Furthermore, the video sequences of NEC-Drone comprise high-
resolution frames (1920x1080), and the action is often relegated to the corner of the frame and inmany cases, the view
is extremely slanted. Understandably, this setting is characterised by a significantly more challenging domain shift
that consequently induces all the tested state-of-the-art methods to perform poorly on the original data. To alleviate
this problem, we employed a pre-processing step exploiting a pretrained YOLO-based [40] human detection model
using AlphaPose [15] to identify and locate the human actor(s) and then crop around the humans with a minimal
resolution of 224x224. In the following experiments, we used the cropped version of the NEC-Drone dataset.

Baselines. We compare our results with those obtained by state-of-the-art methods for UDA in video action recog-
nition, namely TA3N [5], TCoN [36], SAVA [52] and CO2A [10]. For a fair comparison, the results of TA3N are also
reported after replacing their ResNet backbone with I3D. Also, as a transformer-based baseline, we report the results
obtained by replacing our proposed loss with three different domain alignment strategies, namely: a Maximum Mean
Discrepancy (MMD) domain alignment component [30], an adversarial approach relying on a domain classifier as in
[17] and a Maximum Classifier Discrepancy (MCD) based component [41]. MCD aligns domains by employing task-
specific decision boundaries that maximise the discrepancy between the output of two distinct classifiers to detect
target samples lying far from source support and minimise the discrepancy of the transformer, so it learns how to
produce target features closer to source support. The adversarial-based approach [17] consists of adding an MLP-
based domain classifier that is responsible for predicting the domains of the instances given their video-level feature
representations. We added a target cross entropy based on the pseudo-labels to all baselines was we found that this
improved performance.

Results. Table 1.1 presents the results on HMDB↔UCF. Along with the scores achieved with our proposed method,
we report the ones obtained by previous approaches on the same settings. As it can be observed, all transformer-
based models significantly outperform previous methods (except for CO2A [10]) in both directions, suggesting that
transformer-based methods are more robust to domain shift even without any domain adaptation strategy. In par-
ticular, we achieve an accuracy of 96.8% and 92.3% in the two directions, outperforming the current best competitor
(CO2A [10]) by 1% and 4.5%, respectively. Results also show that our method outperforms MMD with a transformer-
based architecture. Also, the proposed MCD and adversarial-based baselines are outperformed (in just one of the
two directions for the case of MCD). Finally, we report, as upper bounds, the scores obtained with the supervised ver-
sion of the method, i.e., the case where ground truth target labels are used instead of pseudo-labels to compute the
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Table 1.1: Results on HMDB↔UCF.

Method Encoder H→U U→H

Baselines

Source only [5]

ResNet

71.7 73.9
DANN [18] 76.3 75.2
JAN [31] 74.7 79.6
AdaBN [25] 72.2 77.4
MCD [41] 73.8 79.3
TA3N [5] 81.8 78.3
Target only [5] 82.8 94.9

TCoN [36] 2D/3D CNN 89.1 87.2

Source only [52]

I3D

88.8 80.3
TA3N [5] 90.5 81.4
SAVA [52] 91.2 82.2
CO2A [10] 95.8 87.8
Target only [52] 95.0 96.8

Transformer-based

Source only

Transformer

93.7 86.9
MMD [30] 96.5 87.9
MCD [41] 97.2 87.9
Adversarial [17] 96.6 87.6
UDAVT (ours) 96.8 92.3
UDAVT (ours) - supervised 97.2 94.4
Target only 97.9 95.8

Table 1.2: Results on NEC-Drone.

Method Encoder Top-1 Acc

Baselines

Source only Resnet 15.8
TA3N [5] 28.0

Source only
I3D

32.0
TA3N [5] 44.7
SAVA [52] 42.5
CO2A [10] 45.8

Transformer-based

Source only

Transformer

29.4
MMD [30] 54.4
MCD [41] 38.1
Adversarial [17] 40.8
UDAVT (ours) 65.3
UDAVT (ours) - supervised 78.1
Target only 82.9

cross-correlation matrix. Table 1.2 reports the scores obtained on the Kinetics→NEC-Drone benchmark. This setting
corresponds to amore significant domain shift since the target video sequences are shot by drones in a specific indoor
environment. For this reason, it is easy to observe that the absolute value of all the reported scores is significantly
lower when compared to the accuracy obtained in the previous benchmarks. However, the results clearly show how
the transformer-based approaches strongly outperform the baselines achieving a score of 65.3%, which is about 17
points more than the best competitor. In addition, the proposed loss achieves more than 10 points when compared to
the MMD-based transformer. The gap is wider when it comes to the MCD and adversarial-based baselines, which are
outperformed by 27 and 25 points. These experiments show that (i) the transformer-based backbone proves effective
when applied to cases where a higher domain shift is present and (ii) the proposed alignment method addresses the
domain gap more efficiently leading to a significant increase in accuracy on the target domain.

Next Steps. The proposed method will be tested on human-robot interaction scenarios particularly on the data col-
lected by the Spring Project.

1.3 Group-level Behaviour Recognition

This deliverable presents various solutions, which eventually result in group-level behavior recognition. We first de-
scribe the gaze target detection module (Sec. 1.3.1), which is developed to detect the gaze of each individual in the
scene captured by the head camera of ARI. This module allows us to better understand who is interacting with whom
and consequently, we can provide a better group detection module. On the other hand, we also present a F-formation
detection methodology in 1.3.1, which relies on the position of the individuals as well as their body orientations.

1.3.1 Gaze Target Detection

Human-beings have a remarkable capability to detect the gaze direction of others, understand whether a person is
gazing them, follow other’s gaze to identify their target and determine the attention of others [7]. However, automat-
ically performing and quantifying these remains as a challenging problem. Gaze target detection (also referred as
gaze-following [8, 16]) is to inferring where each person in the scene (2D or 3D) is looking at [39, 47, 28].

D4.3: Multi-modal behaviour recognition in realistic environments Page 7 of 19
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Proposed Method. We aim to predict the gaze of a person in an RGB scene image, captured by the head camera of
ARI. To do so, we propose a method, whose inputs are: (a) an RGB scene image, which contains the field of the view
of head camera of ARI; (b) an RGB head image, which is cropped from the RGB scene image, corresponding to the
person whose gaze is going to be estimated, and (c) a scene depth image obtained frommonocular depth estimation
network of Ranftl et al. [37] (which will be further replaced by our method, whose development and optimization in
process). The output of the proposed method is the gaze heatmap, i.e., a 1-channel 2D matrix whose peak value
represents the gaze coordinates. In other words, we can predict the image coordinates of each person’s gaze and
predict the probability that each person is gazing at an object inside or outside the image. The proposed method is
illustrated in Fig. 1.2. The code of this approach is publicly available on GitLab2.

Figure 1.2: An illustration of the proposed method. Mul, Concat, Outer product and Sum stand for multiplication,
concatenation, channel-wise outer product [46], summation operators, respectively.

As seen, the proposed network is composed of: scene and depth network processes the RGB and depth of the
scene, while the head network processes the head independently and produces an attentionmap that is thenmultiplied
by the RGB and depth embeddings. The fusion and prediction module concatenates scene, depth, and head features
to obtain the two final outputs of the proposed method: a 2D gaze heatmap that encodes the region in which gaze
happens, and the probability of the gaze target being inside or outside the scene. The details of each component are
given in Annex 3.2.

Evaluation on Realistic Environments. The proposed method is evaluated on two benchmark datasets: GazeFollow
[38] and VideoAttentionTarget [8]. We follow the standard training/testing split of each dataset for fair comparisons
with the prior art. GazeFollow dataset [38] includes more than 120K images from various classification and detection
datasets (i.e., SUN [53], COCO [27], Actions-40 [55], PASCAL [14], and Places [59]), with more than 130K annotations
of head locations and the corresponding gaze points. VideoAttentionTarget [8] is a collection of 1331 video clips from
various sources on YouTube. The annotations include more than 160K frame-level head bounding boxes and 110K
gaze targets inside the scene. The following metrics were adopted to evaluate the performance of the proposed
model in line with the prior art [38, 8, 16]. Heatmap Area Under Curve (AUC %) [20] is to asses the confidence of the
predicted heatmap with respect to the ground-truth. Average distance (Avg.Dist.) stands for the Euclidean distance
between the predicted gaze location and the ground-truth gaze point.

2GitLab repository: https://gitlab.inria.fr/spring/wp4_behavior/non-integrated-contributions/gaze-cnn.git
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Table 1.3: Evaluation on benchmark datasets. The best results (the higher theAUC and the lower the average distance
(Avg.Dist.) is better) are shown in bold.

GazeFollow [38] VidAttTrgt [8]
AUC Avg.Dist. AUC Avg.Dist.

[38] 87.8 0.190 - -
[7] 89.6 0.187 83.0 0.193
[26] 90.6 0.145 - -
[8] 92.1 0.137 86.0 0.134
[16] 92.2 0.124 90.5 0.108
Ours 92.7 0.141 94.0 0.129
Human 92.4 0.096 92.1 0.051

Results. We compare our approach with several prior art in Table 1.3. Our method achieves better results com-
pared to all of them, and becomes SOTA for all datasets in terms of AUC. It surpasses even the human performance
in GazeFollow [38] and VideoAttentionTarget [8] datasets. In particular, its relative performance improvements in
VideoAttentionTarget [8] dataset is obtrusive. In terms of Avg.Dist., our method falls behind [16] while performing
better than other methods.

Next Steps. The proposed method will be tested on human-robot interaction scenarios particularly on the data col-
lected by the Spring Project.

1.3.2 Group Detection

Group detection assigns people that where detected in the surrounding of ARI to conversational groups. Detection
of such groups is an essential element of SPRING due to two reasons. 1) It defines the groups with which ARI can
interact and identifies the people ARI has to consider when interacting with a group. 2) It improves the human aware
navigation as it allows tomodel group spaces. Group spaces are used to correctly join groups and to avoid interrupting
them by navigating, for example, through them.

As a solution we use the Graph-Cuts for F-formation (GCFF) algorithm by Setti et al. [43]. It is based on the concept
of F-formations by Kendon [22]. F-formations describe the arrangement of individuals of a group with respect to their
positions and orientations. They are defined by three social spaces: o-space, p-space, and r-space (Fig. 1.3). The
o-space is an empty space around which the individuals of a group are positioned. The p-space is the space in which
the members of a group are positioned. The r-space is the space outside the group.

GCFF identifies the o-spaces of different groups. It uses for this the concept of transactional segments [9]. These
describe the space in front of a person in which it can perform actions and its sensing (vision and hearing) are best.
GCFF identifies areas in which the transactional segments of people overlap (see Algorithm 1). These overlapping
spaces are potential o-spaces of groups in which people interact with each other. The details of this method is given
in Section 3.3.

Figure 1.3: Overview of different F-formations that describe group formations. Each formation is defined by a o-space
(orange), the space in front of all people of a group where they interact, a p-space (green) where they are located, and
a r-space (blue), the space surrounding the group. Figure taken from [43].
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Algorithm 1 GCFF algorithm for group detection
Initialise with OGi

= TSi∀i ∈ [1, . . . , n]
old_cost =∞
while J(OG, TS) < old_cost do

old_cost← J(OG, TS)
run graph cuts to minimize cost Eq. 3.6
for ∀g ∈ [1, . . . ,M ] do

if g is not empty then
update OG ← 1

|G|
∑

i∈G TSi

end if
end for

end while

Conclusion. The GCFF algorithm detects groups of people and their o-space center. Its hyper-parameters D, the
distance between a person and its transactional segment center, and σ, used to control the MDL that punishes the
number of detected F-formations, are chosen manually based on experiments performed with ARI. Empirical results
of the GCFF detection performance can be found in [43].

1.4 Audio-based Emotion Classification

The ability to perceive the emotional state of a person is of crucial importance in the design of socially pertinent
robots, as it supports the higher level decision on the preferred way to proceed with the interaction between the robot
and the human.

We are proposing a SER algorithm which is a variant of the system proposed in [19]. In the proposed scheme, the
acoustic features are extracted from the audio utterances and fed to a neural network that consists of CNN layers,
BLSTM combined with an attention mechanism layer, and a fully-connected layer. We evaluated our model using
Ryerson audio-visual database of emotional speech and song (RAVDESS) [29] and interactive emotional dyadicmotion
capture (IEMOCAP) [3] databases achieving weighted accuracy, of 80% and 64%, respectively. The code of the SER is
publicly available on 3.

Figure 1.4: Architecture of the network.

Method. Our starting point is the SER model presented in [19] with several modifications adopted from [34]. We use
a convolutional long- short term deep neural network (CLDNN) model that comprises three parts. The first part of
the scheme consists of 4 layers of a Conv2D network with a kernel size of 3 × 3 and stride of 1. The first two layers

3https://gitlab.inria.fr/spring/wp4_behavior/non-integrated-contributions/ser
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Figure 1.5: Results on RAVDESS database (left), IEMOCAP database (right).

comprise 64 filters and the following two layers comprise 128 filters each. The layers combine BatchNormalization,
relu activation, MaxPooling2D with size of 4 × 4, stride of 4 × 4 and a dropout rate of 0.2. The two dimensions of
the convolutional layers corresponds to the time and frequency axes, respectively. The second part of the scheme is
a BLSTM+attention layer. The BLSTM is implemented with a size of 256, and outputs the hidden states, the hidden
forward state, and the hidden backward state that are fed into an attention layer. We implemented the attention
mechanism using the architecture proposed by Bahdanau et al. [2]. The third and last part of the system is an fully-
connected (FC) layer with a softmax activation function, indicating the probabilities of each emotion. The entire
architecture of the proposed SER is depicted in Fig. 1.4.

The model was trained with a categorical cross-entropy loss function,. The overall number of parameters was
about 1.180M for the RAVDESS database and about 1.4420M for the IEMOCAP database.

After trying different combinations of features, the best results for the RAVDESS database were obtained by using
the mel-spectrogram feature [42] with 128 mel bands. For the IEMOCAP database we found that the best results are
obtained by concatenating several common audio features, namely mel frequency cepstral coefficientss (MFCCs)
and their derivatives, spectral properties (centroid, contrast, bandwidth, and roll-off), zero-crossing rate (ZCR), and
root mean square (RMS).

Results. RAVDESS [29] is a publicly available audio-visual database (we use only the audio modality). The database
comprises 24 actors, evenly distributed betweenmale and female speakers, each uttering 60 English sentences. Over-
all, there are 1,440 utterances in total, expressing 8 different emotions: ‘sad’, ‘happy’, ‘angry’, ‘calm’, ‘fearful’, ‘surprised’,
‘neutral’, and ‘disgust’. In the experiments, we combined the emotions ‘calm’ and ‘neutral’, as they are very similar. All
utterances are transcribed in advance. Consequently, the emotions are more artificially expressed as compared with
spontaneous conversation. Another drawback of the database is the small number of utterances. The network classi-
fied the data into seven different emotions and obtained a weighted accuracy of 80%. The results are also presented
as a confusionmatrix as depicted in Fig. 1.5. It is important to note that the classes ‘happy’ and ‘sad’ have significantly
lower accuracy than the other classes.

The IEMOCAP [3] database comprises approximately 12 hours of audio-visual data, including video, speech, mo-
tion capture of the face, and text transcriptions (again we only use the audio modality). The database consists of
conversations of two people that are either improvised or played according to a pre-determined transcript that was
chosen to evoke different emotions. The database consists of 10 actors, evenly distributed between male and female
speakers. The utterances are classified into 9 different emotions: ‘neutral’, ‘happiness’, ‘sadness’, ‘anger’, ‘surprise’,
‘fear’, ‘disgust’, ‘frustration’, and ‘excited’. Following [33, 35, 34, 54, 13, 57, 51], only the emotions ‘neutral’, ‘happiness
+ excited’ (denoted ’happy’), ‘sadness’, and ‘anger’ are used while training and evaluating the performance of a SER.
The network classified the data into four different emotions and obtained a weighted accuracy of 64%. The results
are represented as a confusion matrix as depicted Fig. 1.5. It is important to note that the class ‘happy’ has lower
accuracy than the other classes. similar issues were reported in [33, 58, 35, 34] and it may indicate that the ‘happy’
emotion is more difficult to characterize.
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2 Conclusions

Wehave presented the first prototype implementation of tools for (a) single target behaviour recognition and (b) group-
level behaviour analysis. We also present an audio-based emotion recognition method, which can further be merged
with behaviour recognition models in order to jointly understand behaviors and emotions.

Regarding the single task target behaviour recognition, we have introduced a novel method, which is based on spa-
tial transformers and apply unsupervised domain adaptation, which is important to handle the domain-shift problem,
that can occur when the trained and test domains are coming from different distributions. The performance of this
module was evaluated in publicly available datasets, which are corresponding to realistic environments. This method
will be integrated into ARI in the future and will be tested on human-robot interaction scenarios, most importantly,
importantly on the dataset collected by the SPRING project.

Regarding group-level behaviour analysis, we have presented two methods. One concerns gaze target detection
and the other concerns group detection. In the future, both will serve as important cues to understand and detect
the group membership and its joint behavior. Gaze target detection, which is implemented as a multi-modal network
using depth and scene images, was tested on publicly available datasets. This method was already integrated into
ARI. It will be further improved to handle the domain-shift problem, and then will be tested on human-robot interaction
scenarios as well, and most importantly on the dataset collected by the SPRING project. Group detection module
is adapted from a state-of-the-art method. It will particularly, allow us to correctly detect the conversational groups,
detect which group is interactingwith ARI, identify the people ARI has to consider interactionwith. Also, we expect that
it will improve the human-aware navigation, as it should allow to model group spaces, which are used to navigate ARI
to correctly join the groups and to avoid interrupting others while joining. The group and individual activity detection
modules will be improved by including the detected objects in the scene.

The SER method presented in this study uses the acoustic features extracted from the audio utterances. It is
composed of a neural network that consists of CNN layers, BLSTM combined with an attention mechanism layer, and
a fully-connected layer. Thismethod showed promising results on publicly available datasets. As future work, it will be
integrated into ARI and tested on human-robot interaction scenarios, and most importantly on the dataset collected
by the SPRING project.
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3 Annex

3.1 Details of Single-Target Behavior Recognition

The two main phases of our approach are described as follows.

Phase I: Source-only fine-tuning The training process of this phase starts from amodelH pretrained on the Kinetics
dataset [21] and consists of fine-tuning the entire model Fθ using only the source data S. As in [44], we consider 16
frames uniformly sampled to represent a source video XS as input to Fθ. The first part of the model Hs divides each
frame into 16x16 patches that are then projected into feature vectors. Hs consists of ViT, which receives as input the
projected patches together with a classification token [CLS]S as in [11]. Each frame is processed individually, extract-
ing feature representations fS

Hs
= [CLS]S that consists of the classification token linked to that specific frame. During

the forward pass, [CLS]S will collect all important information from the image patches. The frame-level features fS
Hs

are then forwarded through Ht together with a new classification token [CLS]T which, after processing, produces
the video-level feature representations fS = [CLS]T . In this step, Hs and Ht are fine-tuned following the strategy
proposed in [32], which consists of freezing all parameters except the positional encoding, the input embeddings, the
classification tokens and the affine transformations inside the layer normalisations [1]. While [32] studied the problem
of partially fine-tuning a transformer for handling different modalities, in this work, we show that this strategy can
be successfully applied to the problem of domain adaptation. Finally, the video level features are then fed to a linear
classifier C. The entire model is trained with a supervised cross-entropy loss LCE , defined as:

LCE = −E(X,y)∈S
∑

yk log σ(Fθ(X)), (3.1)

where σ is the softmax operation. Due to lack of space, the reader is referred to [44] and [12] for more details about
the transformer architecture.

Phase II: Target Adaptation In this phase, the spatial transformerHs is frozen, while the parameters ofHt are trained
to exploit both labelled source and unlabelled target data. This choice is motivated by the need of reducing compu-
tational resources, while still performing adaptation at the temporal level. Freezing part of the model enables us to
increase the batch size, which is fundamental for the proposed domain alignment strategy (Eqn. 3.3). To train our
model, 16 frames are sampled from both source XS and target XT videos, as in the previous phase. Video-level fea-
ture representations fS and fT are then produced for videos of both domains. Subsequently, the temporal features
of source videos fS are provided as input to the linear classifier C. To perform adaptation, we rely on the Information
Bottleneck (IB) principle [48, 49]. Fig. 3.1 shows how the IB principle is applied to our problem. First, we assume that
there exists a domain transformation g ∼ G that maps a target instance XT to a source instance X

S that has the
same label. Unlike [56], which considers that one instance is mapped to a perturbed version of the same instance via
some type of data augmentation, we map a single target instance XT to multiple different XS in the same iteration.
We experimentally show that this is indeed beneficial since by increasing the number of source instances via the us-
age of a queue, and consequently the number of pairs, we observed a large boost in performance. As annotations
are not provided for the target domain, we resort to pseudo-labels for matching source and target instances. The
model H maps X

S to the feature representation f
S . According to the IB principle, we want the model H to learn a

representation f
S which encodes as much information as possible about the original instance XT . This objective

is carried out by maximising the Mutual Information I(f
S
, XT ). Then, the second objective consists of minimising

I(f
S
, X

S
) to make the modelH invariant to the transformation of the sampleXT into a different domain. The overall

loss function can be written as:
LIB = I(f

S
, X

S
)− β I(f

S
, XT ) (3.2)
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Figure 3.1: Information Bottleneck diagram showing the proposed flow of information to perform adaptation.

Since optimising for mutual information in a high dimensional space is difficult, previous works have proposed
different ways to approximate Eqn. 3.2. In this work, we derive a loss function similar to that used in the Barlow Twins
method [56], where it was proved that, under certain conditions, Eqn. 3.2 can be approximated as:

LIB =

d∑
i

(1− Cii)
2 + λ

d∑
i

d∑
j ̸=i

(Cij)
2, (3.3)

whereC is a cross-correlationmatrix computedover a batch ofB data obtained through a feature extractor {z1, . . . , zB}
and their corresponding transformed version {z′1, . . . , z′B}, where i is the feature index and d is the total number of fea-
tures. Each element of C is defined as Cij =

∑
b zi,bz

′
j,b√∑

b(zi,b)
2
√∑

b(z
′
i,b)

2
, where zi and z′i are mean centred. While in [56]

the cross-covariance matrix is computed considering the original images and their augmented versions, we propose
to re-purpose it for domain alignment using corresponding samples across the two domains. The loss in Eq.3.3 is
a trade-off between two objectives, the first term that pushes the learned representation to be domain invariant and
a second term that decorrelates the different components of the embedding. To build C , we introduce a projection
head P , similar to the one in [56], mapping fS and fT to zS and zT . Then, each source instance representation zSi
is paired with all target instance representations zTj where the label of instance i and the pseudo-label of instance
j are equal. Note that the same instance i or j can appear in more than one pair. We also introduced a queue Q to
keep recent zS , effectively increasing the number of possible instances that are paired with zT in the minibatch. After
forming this list of pairs, the cross-correlation matrix can be computed between the source instances and the target
instances of all pairs. This process makes the model invariant to instances of different domains and enables tackling
the domain adaptation setting. Our final loss, introducing a weighting factor α, is then defined as follows:

L = LCE + αLIB. (3.4)

3.2 Details of Gaze Target Detection

Each component of gaze target detection method are explained as follows.

Head Network. Given the RGB scene image Si, we crop the head Hi of the person of interest. The head image
is processed by the head network’s backbone (ResNet50) that maps the original representation Hi into a feature
embedding ehi . Such features are average pooled and processed by a set of linear layers that outputs an attention
map. The outcome of the attention map attnh

i is multiplied by the scene and depth feature embeddings.

Scene Network. The scene network shares the same backbone structure as the head and depth networks. However,
the input to this module is the concatenation of the RGB scene image Si and the binary head mask Mi that encodes
the position of the person’s head in the image. Each channel of the feature embedding of the scene network esi is
multiplied by the attentionmap attnh generated by the head network. Bymultiplying the output of the scene network’s
backbone with the attention map, we force the network to focus on objects in the scene that are relevant w.r.t. the
person of interest and its head orientation.

Depth Network. The depth network shares the same backbone structure and input shape of the scene network. This
module receives as the input the depth map edi of the scene and a binary head mask. The feature embeddings from
the depth backbone are multiplied by the head attention map.
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Fusion and Prediction Network. The feature embeddings from the head network ehi and the attended scene and
depth embeddings esi

⊗
attnh

i , edi
⊗

attnh
i are sent as input to the fusion and prediction network. Such components

creates a lower-dimensional feature space of scene and depth by concatenating each of those embeddings with the
output of the head network’s backbone. To obtain the 2D gaze heatmap Hi this module uses a multi-layer decoder
that takes as input the summation of scene and depth embeddings. Moreover, the channel-wise outer product [46]
between scene and depth embeddings is input to a small encoder that produces the in/out of frame output InOuti.

3.3 Details of Group Detection

Graph-Cuts for F-formation (GCFF) uses for each person Pi = (xi, yi, θi) (with i ∈ [1, . . . , n]) their position (xi, yi) in the
2Dmap and their body orientation θi which is determined by their feet orientation (Fig. 3.2). The transactional segment
of a person is modeled by a Gaussian TSi ∼ N (µi,Σi) where the center µi = [xµi

, yµi
] = [xi +D cos θi, yi +D sin θi]

is located a distance D in front of the person. The Gaussian is circular: Σi = σ ∗ I where I is the 2D identity matrix.
The transactional segment represents a circular area in front of the person that should overlap with the F-formations’
o-space the person is part of. Og = [ug, vg] is the position of a candidate o-space centre for F-formation g ∈ {1,M}.
Gi is the F-Formation that contains person i. Thus, OGi

= [uGi
, vGi

] represents the position of the o-space center to
which person i is assigned to. Single persons are assigned to a F-formation that has only them as members.

Given these definitions, we can define the probability of a person being part of a candidate F-formation. The GCFF
is then finding the maximum-likelihood solution that identifies groups o-spaces and their members. We start with
defining the likelihood of an individual i’s transactional segment centre Ci = [ui, vi] given the a priori variable TSi:

Pr(Ci|TSi) ∝ exp

(
−||Ci − µi||22

σ2

)
= exp

(
− (ui − xµi)

2 + (vi − yµi)
2

σ2

)
Thus, the probability that a person i shares an o-space centre OGi

is given by:

Pr(Ci = OGi |TSi) ∝ exp

(
− (uGi

− xµi
)2 + (vGi

− yµi
)2

σ2

)
The posterior probability of the overall assignment of all people is given by:

Pr(C = OG|TS) ∝
∏

i∈[1,n]

exp

(
− (uGi

− xµi
)2 + (vGi

− yµi
)2

σ2

)
(3.5)

where C is a random variable that models the possible joint location of all o-space centres, OG is an instance of such
a joint location, and TS the collection of transactional segments of all people. Just based on (3.5)the maximum a
posteriori probability (MAP) solution is to assign to each person its own group with the o-space center at the exact
location of its transactional segment: OGi

= TSi. To avoid this solution a minimum description length prior (MDL)
that punishes the number of F-formations is added to (3.5):

Pr(C = OG|TS) ∝
∏

i∈[1,n]

exp

(
− (uGi − xµi)

2 + (vGi − yµi)
2

σ2

)
· exp(−|OG|)

Figure 3.2: Inputs and outputs of the GCFF group detection algorithm [43]. Two persons (P1, P2) that face each other
with their transactional segment centers µ1 and µ2. They are are categorized to be part of group O12 with its o-space
depicted as a red circle. Figure taken from [43].
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where |OG| is the number of F-formations. The MAP solution to this problem can be found by taking the negative
log-likelihood and discarding normalising constants resulting in the objective:

J(OG|TS) =
∑

i∈[1,n]

(uGi
− xµi

)2 + (vgi−yµi
)2 + σ−1|OG| (3.6)

To solve (3.6), the GCFF procedure (Algorithm 1) starts by assigning to each person a possible o-space centre. It
then uses a hill-climbing optimisation alternating between assigning individuals to o-space centres using a graph-cut
based optimisation [24] that directly minimises the cost (3.6). It then minimises the least squares component by
updating o-space centres to the mean of Og , for all the individuals i currently assigned to the F-formation. The whole
process is iterated until convergence.
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