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Executive Summary

Deliverable 3.2 reports the progress on task T3.1 on Audio-visual Speaker Detection & Tracking, which is part of WP3:
Robust Audio-visual Perception of Humans. The goal of task 5.3 is developing the multi-party conversational system
that will be deployed on ARI, the robotic platform designed by PAL Robotics for the SPRING project. This deliverable
provides the preliminary software package for multi-party automatic speech recognition (ASR) with speech enhance-
ment algorithms T3.2 & T3.3, and conversational system. The code can be found at the project’s repository,1 and will
be made available up to 4 years after the end of the project.

The main achievements reported in this document are:

1. Visual localisation and tracking of humans adapted to the data acquired by ARI’s fisheye camera, specifically at
Broca Hospital.

2. Model trained using fisheye images and encapsulated in a docker container. The code is also available as a
robot operating system (ROS) package.

3. Detection of active sources in a visual scene (speakers that utter sound) and projecting the results of a naïve
sound localiser, Open embeddeD Audition System (ODAS), on the image.

4. Audio-only concurrent speaker localisation and tracking algorithm, implemented in Python and successfully
tested withmoving human speakers at Bar-Ilan University (BIU) acoustic lab in adverse reverberation conditions.

1https://gitlab.inria.fr/spring/wp3_av_perception
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1 Introduction

This deliverable is part of WP3 of the H2020 SPRING project. The objective of WP3 is “the robust extraction, from the
raw auditory and visual data, of users’ low-level characteristics, namely: position, speaking status and speech signal.”
Following this objective, WP3 has two main outcomes:

1. The Multi-Person Tracking module, jointly exploiting auditory and visual raw data to detect, localise and track
multiple speakers (corresponds to T3.1).

2. The Diarisation and Separation and the Speech Recognition modules, extracting the desired speaker(s) from a
speech dynamic mixture and recognising the speech utterances from the separated sources, for a static T3.2
and a moving T3.3 robot

In this context, the current deliverable D3.2 is an upgrade of D3.1, which described the methods and the software
used for “Audio-visual speaker tracking in realistic environments.” The reader is referred to D3.1 for background con-
tent, as D3.2 is meant to include only the most recent developments.
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2 Visual Localisation and Tracking

As a reminder, the goal of this module is the detection, identification and tracking of people over time using visual
data. In D3.1, a state-of-the-art multi-person visual tracker known as fair multi-objective tracking (FairMOT) [23] was
introduced. In D3.2, some of the original FairMOT models based on the residual neural network (ResNet34) [12] ar-
chitecture have been compared with newly trained models that are better adapted to the non-rectilinear perspective
characteristics of the fisheye camera.

2.1 Training models on the fisheye camera

Themain requirement to train newmodels for multi-person tracking is the availability of suitable annotated images. In
our case, these images should be compatible with the fisheye camera perspective. We considered two approaches to
obtain them: i) transforming available annotated datasets containing wide angle panoramic images into the fisheye
perspective and ii) using actual fisheye images directly recorded with ARI and manually annotated.

2.1.1 Transforming datasets to the fisheye perspective

Since a dataset with images originated in ARI’s fisheye camera was not immediately available, a first attempt was
made to adapt an existing annotated dataset by transforming 360° images from the JackRabbot dataset [16] into
the fisheye geometry. Panoramic images should be suitable to reconstruct fisheye images in the horizontal direction,
as the latter require a wide angle of roughly 180°. However, these panoramics do not cover a very wide angle in the
vertical direction (see Figure 2.1).

Figure 2.1: Example of a 360° panoramic image from the JackRabbot dataset.

Figure 2.2: Left: attempt to transform the central part of the panoramic image of Fig 2.1 into the fisheye geometry.
Right: image captured from ARI’s front fisheye camera.

Not having enough vertical coverage poses a problem because people in the scene at short distances from ARI
are arguably the most interesting to track accurately. However, they will most likely appear cut down at the bottom
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and the top in images from this dataset. Left image of Figure 2.2 shows an attempt to convert the central part of the
panoramic image in Figure 2.1 to the fisheye geometry. We used the package OmniCam1 to do the transformation. As
can be seen when compared with an actual ARI fisheye image on the right, there is a lot of missing information on the
top and bottom and therefore this approach was considered not viable at this point.

2.1.2 Manually annotating an ARI-specific dataset

Our second approach consisted on recording sequences of images that are specific to the ARI robot. In particular,
sequences from the front fisheye camera were recorded using several instances of ARI, i.e., from Inria, from Heriot-
Watt University (HWU), and from the robot used at Broca hospital in Paris in a data collection campaign that took
place in April, 2022.

A total of 6 sequences were considered for training (see Figure 2.3 for examples). The number of images per
sequence was in the range 1000-2000. Some training sequences contained only one person, others only two and yet
others more than 4-5 people. The training dataset was split in two subsets, one containing two sequences with a
total of 2502 images recorded at Broca hospital and another containing 4 sequences and 5605 images, recorded in
several rooms and labs at the premises of the different partners involved. The illumination conditions between the
sequences were significantly different.

In addition to the training dataset, another sequence consisting of 1225 images was used for testing the trained
models. It was a rather challenging sequence due to the fact that both the robot and the people in the scene were
constantly moving, the latter often crossing their paths as well as leaving and entering the scene several times. There
was also a significant number of blurred images due to the movement. The sequence was recorded at the waiting
room of the Broca hospital, which is the room where ARI is expected to operate once deployed.

(a) Inria (b) HWU (c) HWU

(d) HWU (e) Broca (waiting room) (f) Broca (hall)

Figure 2.3: Example of fisheye camera images from the sequences used for training.

All sequences were annotated at Inria frame by frame, using the CVAT (https://cvat.org) software. An example
of an annotated image from the testing sequence is depicted in Figure 2.4, which also shows the CVAT working
environment.

2.1.3 Model training

Initially, the image resolution utilised from the fisheye camera was 1280x960. After some tests, however, it became
clear that reducing the image size to 640x480 did not affect tracking performance while significantly speeding up

1https://gitlab.inria.fr/robotlearn/omnicam
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Figure 2.4: Example of an image from the testing sequence while annotating using the tool CVAT.

both training and tracking. Since the original FairMOT models were trained with images at a much larger resolution
of 1088x608, we opted for retraining them using the same datasets as in the original paper (CrowdHuman (CH) [21]
andMIX datasets [23]) but at a smaller resolution of 800x448, hencemaintaining the aspect ratio. We obtained in this
fashion two baseline models, one for CH and one for MIX. The latter was trained using the former to initialize weights.
Training run during 30 epochs for each model using a batch size of 128.

Another important modification during training was the increase in the dimensionality of the Re-Identification
(ReID) branch from 128 as in the original paper to 512. This improved the robustness of the tracker, especially to
identity switches and in situations where people were leaving the scene and re-entering a while after.

2.1.4 Tracking results

Table 2.1 shows multiple object tracking accuracy (MOTA) performance metrics [2] results in the test sequence for
the different trainedmodels. This metric is widely used tomeasure the performance of a tracker with a single number.
Baseline correspond to models whose training images are not of the fisheye type (CH andMIX). Models in the column
Labswere fine-tuned from the respective baselines using fisheye sequences a-d in Figure 2.3. Column Broca contains
results for models fine-tuned on sequences e-f whereas the last column are for models fine-tuned on all training
sequences.

Table 2.1: MOTA/epochs/detection-threshold on the test sequence for the different trained models.

Pretrained Baseline Labs Broca Labs+Broca

CH 65.6/30/0.35 72.9/15/0.4 75.4/15/0.35 76.2/10/0.35
CH+MIX 68.4/30/0.35 73.9/10/0.45 71.6/10/0.45 74.3/10/0.35

It is clear from the table that fine-tuning on ARI’s fisheye images represent a major improvement in tracking per-
formance with respect to training on images from more standard cameras, as is the case for CH and MIX datasets.
The fisheye perspective introduces heavy distortions that are extreme towards the edges of the image. The tracking
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models trained on CH and MIX work reasonably well towards the center of the fisheye images but they start to fail as
we depart from these central locations.

Considering the small size of the newly annotated dataset, whose number of images are 5605 and 2502 for the
Labs and Broca subsets, respectively, we took care not to overfit during training. Therefore, we closely monitored the
performance as a function of the number of epochs and stopped the training at an optimal point. This is given by the
central number in the cells of Table 2.1, after the MOTA values. The last number of each cell provides the detection
threshold used during tracking.

Notice from the table that the largest increase in tracking performance as compared with the baselines is due
to the use of fisheye images in the training (using Labs subset), and to a lesser extent the involvement of the same
robot and environment during training and during testing (Broca subset). The bestMOTAmeasure was achieved when
fine-tuning the CH baseline using both subsets.

Some visual examples of the tracker on the test sequence for the best model are shown in Figure 2.5. One can
clearly see in (b) and (c) that even people located on the edges of the images can be detected by the tracker, something
we did not observe using the models trained on the CH and MIX datasets.

(a) (b) (c)

Figure 2.5: Tracking examples of the best performing model on the test sequence.

2.1.5 Video tracker implementation

The best performing model and the visual tracking code have been encapsulated in a docker container2 that can run
on an external computer (basestation), provided ARI is publishing the required images from the fisheye. The tracker
was successfully tested and code is also available as a ROS package.3

A recommendation is made at this point to set the fisheye publishing frame rate in ARI to more than the default
5 fps. A frame rate of 20 fps was successfully evaluated yielding much smoother tracking capabilities, while still
meeting real-time constraints.

2.2 Audio-visual fusion

We are currently working on a first version of the audio-visual fusion module, and in particular on speaker diarisation,
namely determining “who speaks when”. Specifically, we are aiming at the task of detecting the active speaker(s) in
a scene based on a combination of the audio and visual modalities. We started to integrate the visual tracker with a
simple audio tracker known as ODAS [9], specifically implemented for robot audition tasks. Thismodule will be substi-
tuted in the near future with a convolutional neural network (CNN)-based system developed by BIU [11] (see Chapter 3).
ODAS implements sound source localisation algorithm, which combines the classical steered response power with
phase transform (SRP-PHAT) method, enhanced by hierarchical search with directivity model and automatic calibra-
tion (HSDA), followed by a tracking algorithm supported by a Kalman filter. The package can be used out-of-the-box
for ARI’s microphone array. Nevertheless, it required some software development to share the hardware (specifically,
to be able to use the microphones simultaneously by other sound processing modules), and ROS integration. Tracked
sound sources are given by ODAS as unit vectors pointing to them (i.e. direction-only), in the microphone frame. Since
we do not actually know the distance of the sound source but only its direction, we have to set an arbitrary distance
(2 or 3 m, for example) in order to obtain an approximated 3D position of the sound source in the microphone frame.

2Docker can be pulled with: “docker pull registry.gitlab.inria.fr/spring/dockers/wp3_tracker:lowres”
3https://gitlab.inria.fr/spring/wp3_av_perception/multi-person_visual_tracker
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Projecting the location of the sound sources into the image plane, necessitates a modification of the sound frame
to the camera frame. For that, we used the calibration parameters of the camera, and projected the point into the
plane image using standard ROS functions (cameraModel.project3dToPixel).

Figure 2.6 depicts an example of this fusion process, where three speakers took turns to speak, with no overlap,
from left to right in successive order in the three images. Each sound source is denoted by a blue circle with a number
inside indicating to which bounding box the source is assigned. We used the following assignment procedure. Based

Figure 2.6: Example of audio-visual fusion between sound source localisation provided by the ODAS algorithm (blue
circles) and the visual tracking module (bounding boxes).

on the location of the sound source (blue circles), a distance cost matrix is calculated with respect to the upper-
central part of the detected bounding boxes, where the head of the speaker is expected to be. Then, the sound source
is assigned to the most likely person (the number inside the circles).

This is a preliminary implementation that nonetheless sets a framework that can be used in the future to seam-
lessly add more properties to the calculation of the cost matrix, for instance, the power of the audio signal.

2.3 Conclusions

As seen in this document, and in the context of multi-person visual tracking, models trained using images from stan-
dard cameras with more or less rectilinear perspective can be used to some extent on images with fisheye perspec-
tive. However, the high distortion present in fisheye images have a detrimental effect on the tracking performance,
especially towards the edges of the images.

In order to counterbalance this problem, we have recorded and annotated several thousand fisheye images, and
fine-tuned models based on rectilinear perspective to achieve a much higher level of tracking performance, improving
MOTA by more than 10% on the tested dataset. We expect that further extension of our fisheye dataset, especially
from the Broca hospital environment, will allow us to improve even more the robustness of the tracker.

We have also started work on an audio-visual fusion approach that will serve as a framework to combine informa-
tion from both the video tracker and the audio processing modules.
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3 Audio-based Concurrent Speakers Localisation and Tracking

We present a deep neural network-based online multi-speaker localisation algorithm. Following the W-disjoint orthog-
onality (WDO) principle in the spectral domain, each time-frequency (TF) bin is dominated by a single speaker, and
hence by a single direction-of-arrival (DOA). A fully convolutional network is trained with instantaneous spatial fea-
tures to estimate the DOA for each TF bin. The high resolution classification enables the network to accurately and
simultaneously localize and track multiple speakers, both static and dynamic. The algorithm was evaluated using
recordings of moving human speakers. Deploying the algorithm in ARI necessitates re-training.

3.1 Time-frequency features

Consider an array with M microphones acquiring a mixture of N speech sources in a reverberant environment. The
i-th speech signal si(t) propagates through the acoustic channel before being acquired by the m-th microphone:

zm(t) =

N∑
i=1

si(t) ∗ hi
m(t), m = 1, . . . ,M, (3.1)

where hi
m is the room impulse response (RIR) relating the i-th speaker and the m-th microphone. In the short-time

Fourier transform (STFT) domain, (3.1) can be written as (provided that the frame-length is sufficiently large with
respect to (w.r.t.) the filter length):

zm(l, k) =

N∑
i=1

si(l, k)hi
m(l, k), (3.2)

where l and k, are the time-frame and the frequency indices, respectively.
The STFT (3.2) is complex-valued and hence comprises both spectral and phase information. It is clear that the

spectral information alone is insufficient for DOA estimation. It is therefore a common practice to use the phase of the
TF representation of the received microphone signals, or their respective phase-difference, as they are directly related
to the DOA in non-reveberant environments. We decided to use an alternative feature, which is generally independent
of the speech signal and is mainly determined by the spatial information. For that, we have selected the relative
transfer function (RTF) [8] as our feature, since it is known to encapsulate the spatial fingerprint for each sound source.
Specifically, we use the instantaneous relative transfer function (iRTF), which is the bin-wise ratio between the m-th
microphone signal and the reference microphone signal zref(l, k):

iRTF(m, l, k) =
zm(l, k)

zref(l, k)
. (3.3)

Note, that the referencemicrophone is arbitrarily chosen. Referencemicrophone selection is beyond the scope of this
chapter (see [22] for a reference microphone selection method). The input feature set extracted from the recorded
signal is thus a 3D tensorR:

R(m, l, k) = [Re(iRTF(m, l, k)), Im(iRTF(m, l, k))]. (3.4)

ThematrixR is constructed fromL×K bins, whereL is the number of time frames andK is the number of frequencies.
Since the iRTFs are normalized by the reference microphone, it is excluded from the features. Then for each TF bin
(l, k), there are P = 2(M − 1) channels, where the multiplication by 2 is due to the real and imaginary parts of the
complex-valued feature. For each TF bin the spatial features were normalized to have a zeromean and a unit variance.

Recall that theWDO assumption [18] implies that each TF bin (l, k) is dominated by a single speaker. Consequently,
as the speakers are spatially separated, i.e. located at different DOAs, each TF bin is dominated by a single DOA. Our
goal in this work is to accurately estimate the speaker direction at each TF bin from the given mixed recorded signal.
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3.2 FCN for DOA estimation

We formulated the DOA estimation as a classification task by discretizing the DOA range. The resolution was set
to 5◦, such that the DOA candidates are in the set Θ = {0◦, 5◦, 10◦, . . . , 180◦}. Let Dl,k be a random variable (r.v.)
representing the active dominant direction, recorded at bin (l, k). Our task boils down to deducing the conditional
distribution of the discrete set of DOAs in Θ for each TF bin, given the recorded mixed signal:

pl,k(θ) = p(Dl,k = θ|R), θ ∈ Θ. (3.5)

For this task, we use a deep neural network (DNN). The network output is an |Θ| × L ×K× tensor, where |Θ| is the
cardinality of the set Θ. Under this construction of the feature tensor and output probability tensor, a pixel-to-pixel
approach for mapping a 3D input ‘image’, R and a 3D output ‘image’, pl,k(θ), can be utilized. A fully convolutional
network (FCN) is used to compute (3.5) for each TF bin. The pixel-to-pixel method is beneficial in two ways. First,
for each TF bin in our input image the network estimates the DOA distribution separately. Second, the TF supervision
is carried out with the spectrum of the different speakers. The FCN hence takes advantage of the spectral structure
and the continuity of the sound sources in both the time and frequency axes. These structures contribute to the pixel-
wise classification task, and prevent discontinuity in the DOA decisions over time. In our implementation, we used
a U-net architecture, similar to the one described in [19]. We dub our algorithm time-frequency direction-of-arrival
net (TF-DOAnet).

The input to the network is the feature matrixR (3.4). In our U-net architecture, the input shape is (P,L,K), where
K = 256 is the number of frequency bins, L = 256 is the number of frames, and P = 2M − 2 with M the number
of microphones. The overlap between successive STFT frames is set to 75%. This allows to improve the estimation
accuracy of the RTFs, by averaging three consecutive frames both in the numerator and denominator of (3.3), without
sacrificing the instantaneous nature of the RTF.

TF bins in which there is no active speech are non-informative. Therefore, the estimation is carried out only on
speech-active TF bins. As we assume that the acquired signals are noiseless, we define a TF-based voice activity
detector (VAD) as follows:

VAD(l, k) =
{

1 |zref(l, k)| ≥ ϵ
0 o.w. , (3.6)

The task of DOA estimation only requires time frame resolution. Hence, we aggregate over all active frequencies
at a given time frame to obtain a frame-wise probability:

pl(θ) =
1

K ′

K∑
k=1

pl,k(θ)VAD(l, k). (3.7)

whereK ′ is the number of active frequency bands at the l-th time frame. We thus obtain for each time framea posterior
distribution over all possible DOAs. If the number of speakers is known in advance, we can choose the directions
corresponding to the highest posterior probabilities. If an estimate of the number of speakers is also required, it can
be determined by applying a suitable threshold. Figure 3.1 summarizes the TF-DOAnet in a block diagram.

3.3 Training phase

The supervision in the training phase is based on theWDO assumption in which each TF bin is dominated by (at most)
a single speaker. The training is based on simulated data generated by a publicly availble RIR generator software,1
efficiently implementing the image method [1]. A four-microphone linear array was simulated with (8, 8, 8) cm inter-
microphones distances. Similar microphone inter-distances were used in the test phase. For each training sample,
the acoustic conditions were randomly drawn from one of the simulated rooms of different sizes and different rever-
beration levels RT60 as described in Table 3.1. The microphone array was randomly placed in the room in one out of
six arbitrary positions.

For each scenario, two clean signals were randomly drawn from theWall Street Journal 1 (WSJ1) database [17] and
then convolved with RIRs corresponding to two different DOAs in the range Θ = {0, 5, . . . , 180}. The sampling rate of
all signals and RIRs was set to 16KHz. The speakers were positioned at a radius of r = 1.5m from the center of the
microphone array. To enrich the training diversity, the radius of the speakers was perturbed by a Gaussian noise with
a variance of 0.1 m. The DOA of each speaker was calculated w.r.t. the center of the microphone array.

The contributions of the two sources were then summed with a random signal to interfering ratio (SIR) selected in
the range of SIR ∈ [−2, 2] to obtain the receivedmicrophone signals. Next, we calculated the STFT of both the mixture

1Available online at github.com/ehabets/RIR-Generator
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Table 3.1: Configuration of training data generation. All rooms are 2.7 m in height

Simulated training data

Room 1 Room 2 Room 3 Room 4 Room 5

Room size (6× 6) m (5× 4) m (10× 6 m) (8× 3) m (8× 5) m
RT60 0.3 s 0.2 s 0.8 s 0.4 s 0.6 s

Signal Noiseless signals from WSJ1 training database
Array position in room 6 arbitrary positions in each room
Source-array distance 1.5 m with added noise with 0.1 variance

Table 3.2: Configuration of test data generation. All rooms are 3 m in height

Simulated test data

Room 1 Room 2

Room size (5× 7) m (9× 4) m
RT60 0.38 s 0.7 s
Source-array distance 1.3 m 1.7 m

Signal Noiseless signals from WSJ1 test database
Array position in room 4 arbitrary positions in each room

and the STFT of the separate signals with a frame-length K = 512 and an overlap of 75% between two successive
frames.

We then constructed the audio feature matrix R as described in Sec. 3.1. In the training phase, both the location
and a clean recording of each speaker were known, hence they could be used to generate the labels. For each TF bin
(l, k), the dominating speaker was determined by:

dominant speaker← argmax
i
|si(l, k)hi

ref(l, k)|. (3.8)

The ground-truth label Dl,k is the DOA of the dominant speaker. The training set comprised four hours of recordings
with 30000 different scenarios of mixtures of two speakers. It is worth noting that as the length of each speaker
recording was different, the utterances could also include non-speech or single-speaker frames. The network was
trained to minimize the cross-entropy between the correct and the estimated DOA. The cross-entropy cost function
was summed over all the images in the training set. The network was implemented in Tensorflow with the Adam
optimizer [13]. The number of epochs was set to be 100, and the training stopped after the validation loss increased
for 3 successive epochs. The mini-batch size was set to be 64 images.

The U-net architecture is presented in Fig. 3.1. The blue boxes depict the encoder and the green boxes the de-
coder. In this architecture, in the encoder part, the input image is squeezed into a bottleneck using 2× 2 max pooling
operations (downsample), and then in the encoder part, it is upsampled back to the original image shape. The main
problem with this architecture is that during the pooling operation, important local information is lost. To tackle this
problem, a U-shape architecture was developed in [20]. The U-net connects between mirrored layers in the encoder
and decoder by passing the information without going through the bottleneck and thus, alleviating the information
loss problem.

3.4 Experimental Study

3.4.1 Experimental setup

In this section we evaluate the TF-DOAnet and compare its performance to classic and DNN-based algorithms. To
objectively evaluate the performance of the TF-DOAnet, we first simulated 2 unfamiliar test rooms. Then, we tested
our TF-DOAnet with real RIR recordings in different rooms. Finally, a real-life scenario with fast moving speakers was
recorded and tested.
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Figure 3.1: U-net architecture for DOA-mask speech separation. The blue blocks depict the encoder and the green
blocks depict the decoder.

For each test scenario, we selected two speakers from the test set of the WSJ1 database [17], placed them at two
different angles between 0◦ and 180◦ relative to the microphone array, at a distance of either 1m or 2m. The signals
were generated by convolving the signals with RIRs corresponding to the source positions and with either simulated
or recorded acoustic scenarios.

Performance measures Two different measures to objectively evaluate the results were used: the mean absolute
error (MAE) and the localization accuracy (Acc.). The MAE, computed between the true and estimated DOAs for each
evaluated acoustic condition, is given by

MAE(◦) =
1

N · C

C∑
c=1

min
π∈SN

N∑
n=1

|θcn − θ̂cπ(n)|, (3.9)

where N is the number of simultaneously active speakers and C is the total number of speech mixture segments
considered for evaluation for a specific acoustic condition. In our experiments N = 2. The true and estimated DOAs
for the n-th speaker in the c-th mixture are denoted by θcn and θ̂cn, respectively.

The localization accuracy is given by

Acc.(%) =
Ĉacc.

C
× 100 (3.10)

where Ĉacc. denotes the number of speechmixtures for which the localization of the speakers is accurate. We consid-
ered the localization of speakers for a speech frame to be accurate if the distance between the true and the estimated
DOA for all the speakers was less than or equal to 5◦.

Compared algorithms We compared the performance of the TF-DOAnet with two frequently used baseline meth-
ods, namely themultiple signal classification (MUSIC) and SRP-PHAT algorithms. In addition, we compared its perfor-
mance with the CNN multi-speaker DOA (CMS-DOA) estimator [4].2 To facilitate the comparison, the MUSIC pseudo-
spectrum was computed for each frequency sub-band and for each STFT time frame, with an angular resolution of
5◦ over the entire DOA domain. Then, it was averaged over all frequency subbands to obtain a broadband pseudo-
spectrum followed by averaging over all the time frames L. Next, the two DOAs with the highest values were selected
as the final DOA estimates. Similar post-processing was applied to the computed SRP-PHAT pseudo-likelihood for
each time frame.

3.4.2 Speaker localization results

Static simulated scenario We first generated a test dataset with simulated RIRs. Two different rooms were used,
as described in Table 3.2. For each scenario, two speakers (male or female) were randomly drawn from the WSJ1
test database, and placed at two different DOAs within the range {0, 5, . . . , 180} relative to the microphone array. The
microphone array was similar to the one used in the training phase. Using the RIR generator, we generated the RIR for
the given scenario and convolved it with the speakers’ signals.

The results for the TF-DOAnet compared with the competing methods are depicted in Table 3.3. The tables shows
that the deep-learning approaches outperformed the classic approaches. The TF-DOAnet achieved very high scores
and outperformed the DNN-based CMS-DOA algorithm in terms of both MAE and accuracy.

2the trained model is available here https://github.com/Soumitro-Chakrabarty/Single-speaker-localization
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Static real recordings scenario The best way to evaluate the capabilities of the TF-DOAnet is testing it with real-life
scenarios. For this purpose, we first carried out experiments with real measured RIRs from a multi-channel impulse
response database [10]. The database comprises RIRs measured in an acoustics lab for three different reverberation
times of RT60 = 0.160, 0.360, and 0.610 s. The lab dimensions are 6× 6× 2.4 m.

The recordings were carried out with different DOA positions in the range of [0◦, 180◦], in steps of 15◦. The sources
were positioned at distances of 1 m and 2 m from the center of the microphone array. The recordings were carried
out with a linear microphone array consisting of 8 microphones with three different microphone spacings. For our
experiment, we chose the [8, 8, 8, 8, 8, 8, 8] cm setup. In order to construct an array setup identical to the one in the
training phase, we selected a sub-array of the four center microphones out of the total 8 microphones in the original
setup. Consequently, we used a uniform linear array (ULA) with M = 4 elements with an inter-microphone distance
of 8 cm.

The results for the TF-DOAnet compared with the competing methods are depicted in Table 3.4. Again, the
TF-DOAnet outperforms all competing methods, including the CMS-DOA algorithm. Interestingly, for the 1 m case,
the best results for the TF-DOAnet were obtained for the highest reverberation level, namely RT60 = 610 ms, and
for the 2 m case, for RT60 = 360 ms. While surprising at first glance, this can be explained using the following ar-
guments. There is an accumulated evidence that reverberation, if properly addressed, can be beneficial in speech
processing, specifically for multi-microphone speech enhancement and source extraction [8, 15, 7] and for speaker
localization [5, 14]. In reverberant environments, the intricate acoustic propagation pattern constitutes a specific “fin-
gerprint” characterizing the location of the speaker(s). When reverberation level increases, this fingerprint becomes
more pronounced and is actually more informative than its an-echoic counterpart. An inference methodology that
is capable of extracting the essential driving parameters of the RIR will therefore improve when the reverberation is
higher. If the acoustic propagation becomes even more complex, as is the case of high reverberation and a remote
speaker, a slight performance degradation may occur, but as evident from the localization results, for sources located
2 m from the array, the performance for RT60 = 610 ms was still better than the performance for RT60 = 160 ms.

(a) Room view.

6 m.

6 m.

m.

cm.

(b) Speakers’ trajectory.

Figure 3.2: Real-life experiment setup.

Real-life dynamic scenario To further evaluate the capabilities of the TF-DOAnet, we also carried out real dynamic
scenarios experiments. The room dimensions are 6× 6× 2.4m. The room reverberation level can be adjusted and we
set the RT60 at two levels, 390 ms and 720 ms, respectively. The microphone array consisted of 4 microphones with
an inter-microphone spacing of 8 cm. The speakers walked naturally on an arc at a distance of about 2.2 m from the
center of the microphone array. Figure 3.2a depicts the real-life experiment setup and Fig. 3.2b depicts a schematic
diagram of the setup of these experiments. The ground truth labels of these experiment were measured with the
Marvelmind indoor 3D tracking set.3

For the first experiment, the two speakers started at the angles 20◦ and 160◦ and walked until they reached 70◦ and
3https://marvelmind.com/product/starter-set-ia-02-3d/
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(a) Ground truth. (b) CMS-DOA.

(c) The TF-DOAnet.

Figure 3.3: Real-life recording of two moving speakers in a 6× 6× 2.4 room with RT60 = 720 ms.

Table 3.3: Results for two different test rooms with simulated RIRs

Test Room Room 1 Room 2

Measure MAE Acc. MAE Acc.

MUSIC [6] 26.2 28.4 31.5 16.9
SRP-PHAT [3] 25.1 26.7 35.0 15.6
CMS-DOA [4] 13.1 71.1 24.0 38.1
TF-DOAnet 0.3 99.5 1.7 94.3

100◦, respectively, turned around and walked back to their starting point. This was done several times throughout the
recording. Figure 3.3 depicts the results of the this experiment for RT60 = 720 ms.

For the second experiment, the two speakers started at the angles 30◦ and 150◦ and walked until they reached 150◦

and 30◦, respectively. Note that in this experiment there is an overlap between the DOAs of the speakers. Figure 3.4
depicts the results of the this experiment for RT60 = 720 ms.

It is clear that the TF-DOAnet outperformed the CMS-DOA algorithm, especially for the high RT60 conditions.
Whereas the CMS-DOA fluctuated rapidly, the TF-DOAnet output trajectory was smooth and noiseless.

3.5 Conclusions and Next Steps

The audio tracking algorithm is capable of tracking multiple speakers in highly reveberant environment. This was ver-
ified at BIU acoustic lab with reverberation level set to RT60 = 720ms (which is higher than the expected reverberation
level measured at Broca in the room where ARI is expected to operate once deployed.

The tracking algorithm will be retrained with the data collected at BROCA (especially, the room impulse responses
from sources encircling ARI and its microphone array). The BROCA environment is acoustically very challenging.
Moreover, natural sceneswith several peoplemoving in an unstructuredmanner are known to be very challenging. Only
an elaborated evaluation campaign, to take place at BROCA, can determine the tracking capabilities of the algorithm
and its performance bounds.

The algorithm is implemented in Python. It will be shortly migrated to ROS and tested on ARI. As retraining may be
required, we will use the RIRs recorded at Broca, during the recent data collection, to generate suitable training data.
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(a) Ground truth. (b) CMS-DOA.

(c) The TF-DOAnet.

Figure 3.4: Real-life recording of two moving speakers, crossing each other, in a 6× 6× 2.4 room with RT60 = 720ms.

Table 3.4: Results for three different rooms at distances of 1 m and 2 m with measured RIRs

Distance 1 m 2 m

RT60 0.160 s 0.360 s 0.610 s 0.160 s 0.360 s 0.610 s

Measure MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc.

MUSIC 18.7 57.6 19.2 53.2 21.9 42.9 18.4 54.1 26.1 35.8 25.4 32.2
SRP-PHAT 9.0 39.0 13.9 39.4 18.6 29.9 9.7 36.0 16.5 24.7 27.7 21.3
CMS-DOA 1.6 76.3 7.3 75.2 8.4 71.9 5.1 79.5 9.7 60.1 17.5 40.0
TF-DOAnet 1.3 97.5 3.5 83.5 0.9 98.3 5.0 89.5 1.7 95.7 4.8 84.2

Integration with the visual tracker will follow the framework described in Sec. 2.2.
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4 Conclusions

This document reports the progress in both visual-based and audio-based localization and tracking modules. The
visual tracker has already been implemented under ROS. The audio tracker is, currently, only implemented as an inde-
pendent package in Python.

Moreover, we also report preliminary results on audio-visual fusion. By projecting the direction of arrival of audio
sources onto the visual tracker images, we were able to assign a person to each audio source.

In the next steps, wewill work on the integration of the TF-DOAnet audio trackerwith themulti-person visual tracker.
Special attention will be given to complex scenes, with moving and concurrently speaking speakers, desired and

undesired speakers uttering speech out of the visual scene, and static interfering noise.
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