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Abbreviations

Abbreviation Meaning
AI Artificial Intelligence

ARI Social assistive robot used by the SPRING project
BIU Bar-Ilan University (SPRING Partner)

CNN Convolutional Neural Network
COCO Common Objects in Context
CVUT Czech technical university in Prague (SPRING Partner)

HRI Human Robot Interaction
HWU Heriot-Watt University (SPRING Partner)
IGG Image-Grounded Conversations

INRIA Institut National de Recherche en sciences et technologies du numérique (SPRING Partner)
LSTM Long short-term memory
MPC Multi Party Conversation
PAL PAL Robotics (SPRING Partner)
PNP Petri-Net Planner

RelTR Relation Transformer
ROS Robot Operating System

SLAM Simultaneous Localization And Mapping
SPRING Socially Pertinent Robots in Gerontological Healthcare
UNITN University of Trento (SPRING Partner)

VQA Visual Question Answering
WP Work Package (of the SPRING project)

YOLACT You Only Look At CoefficientTs
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Executive Summary

Deliverable 2.6 reports on the visual semantics modules. This report delivers (i) software with a Natural Language
vocabulary (categories) for object recognition that interfaces with the high-level task scheduler for semantic scene
understanding (T2.3) and builds towards interfacing the InteractionManager to incorporate object affordances (T2.4),
and (ii) updated software for object detection and localization in 3D map based on semantic segmentation and un-
known object detection (T2.3) integrated in ARI framework (T7.4) Currently, data used to test the methods and soft-
ware were obtained in relevant realistic laboratory environments. Further testing in hospital environments integrated
with user tasks is foreseen for the future as it depends on the advancement in the development of user cases.
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1 Introduction

The ability to understand and talk about their surroundings is of utmost importance for assistive robots. This is not
only relevant for successfully performing tasks but also to answer questions and have situated dialogues that are
coherent with respect to both the location where the dialogue is taking place as well as previous dialogue turns.
‘Visual language grounding’ refers to the connection between words (symbols) and their referents in the visual space,
e.g., objects, their relationships, their attributes, etc.

Visually grounded dialogue for artificial systems is a challenging problem for many reasons. First of all, how do
we ground language onto the visual world? Languages are very rich and the same words can mean different things in
different contexts or to different people. Moreover, languages can be dynamic, i.e., the meanings of words evolve over
time and newwords are incorporated into the language. Meanings can also be created and negotiated dynamically by
agents collaborating on a task. Therefore, it is unreasonable to encode all of this knowledge beforehand. Secondly,
assuming the artificial agent, e.g., a robot, is able to understand language and ground it onto the visual world, how
does it answer questions? In other words, how does it generate coherent and relevant responses given a scene, a
dialogue history, and a question?

This document reports on the software modules for visual based semantic scene understanding. Chapter 2 in-
troduces some of the most popular tasks related to visual dialogue, including language grounding, and scene graph
generation. Chapters 3 and 4 introduce the developments for semantic segmentation and unknown object detection
and localization in 3D maps. Chapter 5 presents the semantic scene graphs for visual grounded dialogue.

The software will be released in the [33, 34] code repositories. As per European Commission requirements, the
repository will be available to the public for a duration of at least four years after the end of the SPRING project. People
can request access to the software to the project coordinator at spring-coord@inria.fr.
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2 Related work: Vision and Language Research

Being able to have natural conversations about the space where they operate is very important for robots that need
to interact with human users. This ability requires a deep understanding of the surrounding space and the dynamics
of the environment. There are many tasks that have been proposed to attempt to fully or partially address this prob-
lem, e.g., image and video captioning, Visual Question Answering (VQA), Visual Dialogue, etc. For example, VQA [6]
consists of producing an appropriate open-ended response given an image and a question. Solving this task requires
not only an extensive understanding of the scene but also access to common-sense knowledge. Antol et al. [6] pro-
posed two paradigms for evaluating such systems. In the first case, the system is tasked with producing free-form
responses whereas in the second case, the task is posed as answering multiple choice questions. However, in neither
case is the system required to generate the answers. Systems are usually given a set of human-generated answers to
choose from. The difference is that in the multiple choice scenario, the choices belong to a small set of 18 answers,
whereas for the open-ended scenario the answers are chosen from a larger pool of answers (generally 1000), which
are selected according to various criteria. This has the aim to facilitate evaluation and simplify the task but it also
limits the kind of responses the system is able to produce and thus, given that the output is a probability distribution
over available answers, it is unclear what the use of such system could be for Human-Robot Interaction (HRI).

Visual Dialogue [11] is a task devised to evaluate a system’s ability to hold conversations grounded on an image.
In principle, given an image, a dialogue history and a question, the system is tasked with coming up with an accurate
answer. As opposed to VQA, which focuses on one-shot interactions, visual dialogue requires the system to keep
track of previous turns, conditioning future answers on the conversation history. The way performance is evaluated is
based on Mean-Reciprocal-Rank (MRR), i.e., given a sorted list of candidate answers, the position of the ground-truth
is retrieved and the mean of the inverse of this position is calculated for all question-answer pairs in the dataset:

MRR =
1

Q

Q∑
i=1

1

ranki
(2.1)

where ranki is the position of the ground-truth response to question qi and Q is the number of questions in the
evaluation set.

At every turn in the dialogue during evaluation, the system is given an image, the ground-truth dialogue history up
to the point that is being evaluated, a question, and a list of 100 answers that need to be ranked.

However, real-world dialogue is somewhat more complicated than this. First of all, we don’t have a set of possible
predefined answers to choose from. Second, we don’t have access to the “ground-truth” of our conversation but rather,
the history of the dialogue we actually had, with “mistakes” and all. And lastly, given that languages are very rich, there
can be a large number of ways to correctly answer the same question.

The Audio-Visual Scene-Aware Dialog task [2] augments the Visual Dialogue task [11] with audio and video data.
The goal in this case is to ground the dialogue on a sequence of frames, allowing to generalise the idea of visual
dialogue to discuss events that happen over a period of time. As was the case for the previous task, the system is
given a list of 100 answers to choose from at every dialogue turn.

The Visual Genome [19] is a large dataset of images annotated with objects, their attributes and relationships to
other objects, natural language descriptions, and question/answer pairs. Moreover, every image is also represented
by a scene graph that encodes some of this information in a structured representation format. However, the ques-
tion/answer pairs are presented in isolation and as such, do not contain dialogue annotations.

The GuessWhat? [12] task is a cooperative game where a questioner is tasked with finding an object in an image
by asking yes-no questions to an oracle. Besides identifying the correct object, the questioner is encouraged to ask
informative questions by being penalised for every question asked. In other words, the goal is to identify the target
object with the least number of questions. The main objective of this task is to endowmachines with higher-level rea-
soning capabilities to both understand natural language descriptions and ground them on the visual world. However,
since the oracle is only required to provide binary answers (yes/no), the resulting dialogues are quite limited and do
not represent natural open-ended dialogue. Moreover, since the evaluation is only based on whether the correct object
was identified or not, it is not clear what representations such models are learning in order to successfully complete
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Figure 2.1: Example of conversations from IGC (left) and Visual Dialogue (right). Image reproduced from [26].

the task. To address the latter, Suglia et al. [36] proposed a multi-task evaluation framework which has the aim to
encourage the learning of compositional representations. Concretely, apart from task success, they also assess the
model’s ability to predict attributes as well as its generalisation capabilities by mean of a zero-shot evaluation.

Mostafazadeh et al. [26] proposed the Image-Grounded Conversations (IGC) task, which resembles Visual Dia-
logue [11] but is motivated by a different goal. Whereas in Visual Dialogue, the goal is to have a conversation about an
image, IGC aims to have open-ended conversations that, while grounded on an image, can go beyond what’s depicted
by focusing not only on what is visible on the image but also on the general context and common-sense knowledge.
In this way, the resulting dialogues are more natural and complex. For example, in the Visual Dialogue task, the goal
is to “imagine” the scene by asking questions about it based solely on a description of the image and the previous
question/answer pairs. Therefore, answers tend to be concise and to the point. Conversely, in IGC the aim is to have
a conversation on a topic centred on an image. Both parties have access to the image and the conversation can
evolve naturally, perhaps without even explicitly mentioning the objects in the image (see Fig. 2.1 for an example of
the differences between Visual Dialogue and IGC). To achieve this, Mostafazadeh et al. [26] collected a dataset of
interactions elicited by social-media-like posts containing images.

Another area of active research is language grounding [15, 28, 40, 5, 4, 39, 25, 30, 32, 16], including grounded
video descriptions [3, 50]. For example INGRESS [32] approaches the grounding of referring expressions in a robotic
context to pick and place objects following natural language instructions. Besides handling “unconstrained” object
categories and rich language expressions, the system can also interactively ask clarification questions to resolve
ambiguities. The approach works in two stages; in the first stage, visual descriptions of objects are generated and
compared against the referring expressions, and a list of candidate objects is built. In the second stage, pairwise
relations between the candidate objects are assessed and the most likely object is chosen.

Parde et al. [28] ground language on visual concepts through a game-play strategy. Concretely, the system first
learns concepts from images paired with natural language descriptions and then, it refines its knowledge by asking
yes-no questions to a user in the context of a game of “I spy”. By doing so, the system can adapt its concept repre-
sentations to better align to that of its user. However, objects seen during game-play are not novel, i.e., they have been
seen during the initial training phase. Thomason et al. [40] train their system in a similar fashion, i.e., through a game
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of “I spy”, but they also incorporate othermodalities such as sound, haptic and proprioceptive. Moreover, both the user
and the system take turns asking questions, with the other party tasked with guessing the referred object. In this case,
the authors do evaluate generalisation by testing the system on “novel” objects. As opposed to the work by Parde et
al. [28], a description of an object was given at the start of the turn and then the corresponding party proceeded to
guess the object until the correct one was identified. In other words, no further questions about attributes were asked.
During an initial stage, the system collected sensory data that it could then amass to further train its classifiers once
the game was over. That is, in every subsequent game, the system plays with a new subset of objects but it already
possesses features for all the objects. The training of the predicate classifiers though is updated after each game
with the information collected in the previous games, i.e., which features describe which predicates. Building on the
previous work, Thomason et al. [39] implemented a system for improving language parsing and grounding through
human-robot dialogue in order to better deal with natural language instructions containing compositional language.
The system uses bootstrapping from clarification dialogues to improve semantic parsing, and active learning to in-
corporate new concepts to its knowledge base. Object representations are built as before from data collected during
an exploratory phase using visual, auditory, haptic and proprioceptive modalities [40].

2.1 Semantic Scene Graphs

Semantic scene graphs are data structures that encode the semantic information of a visual scene into a graph, where
nodes represent instances of some sort, and edges represent their relationships. This allows for more compact and
interpretable representations that can be leveraged for inference about the scene. Scene graphs have previously
been used for object recognition [20], action recognition [1], image retrieval [17] and 3D scene generation/retrieval [13].
For example, Aksoy et al. [1] approached the categorisation of object-action relations by means of semantic scene
graphs. Concretely, given a sequence of images of a scene, each image is first segmented and each region is treated
as a node in a graph. Edges, representing relationships between segments, are then added depending on how those
segments interact with each other. For instance, they consider four different spatial relations, i.e., absence, no connec-
tion, overlapping, and touching. The first relation simply indicates that the corresponding segment (entity) is absent
from the scene whereas the second relation indicates that there are no connections between two segments. Over-
lapping indicates that one entity contains the other, and touching indicates that the segments partially overlap but
neither is contained by the other. Changes in the topology of the graph are a sign of an event occurring in the scene,
e.g., an object being moved. Actions then are represented as “event tables” which encode the different changes in the
scene graph and similarities between actions can be computed from these event tables. Additionally, objects can be
categorised based on the roles they play in the actions.

Johnson et al. [17] on the other hand used scene graphs for semantic image retrieval. This is done via a Conditional
Random Field (CRF) model that reasons over possible groundings of test images and ranks them based on their like-
lihood. Critically, they don’t address scene graph generation from natural language queries, which would be essential
for real-world applications, particularly in our area of interest. The next section discusses this topic.

2.1.1 Scene Graph Generation

There is currently a large body of work concerned with the generation of scene graphs from images [22, 27, 43, 45,
21, 44, 48, 49, 23, 38, 47, 46, 18, 24, 37] as well as from point-clouds [7, 41, 42]. Xu et al. [43] proposed the generation
of scene graphs via iterative message passing. As it is commonly done in the literature, Faster R-CNN [31] is used to
identify bounding boxes of objects and contextual information is used to jointly infer object classes and their relation-
ships. Context is propagated via message passing between two subgraphs, one processing node information and
another processing edge information. By iterating this process, predictions can be refined and inference efficiency
can be improved.

Zellers et al. [48] looked at the role of “motifs”, i.e., regularly appearing subgraphs, for the automatic generation of
semantic scene graphs. They observed that usually, object labels tend to be a good predictor of relationship labels but
the opposite is not true. Based on this insight, they proposed a baseline that predicts relationship labels based on the
frequency they appear in the training set between corresponding object labels. Furthermore, they proposed Stacked
Motif Networks, a neural architecture that represents global context via bidirectional LSTM networks. Concretely,
Faster R-CNN [31] is used to predict bounding boxes, over which global context is then computed. This context is then
used by another LSTM network to predict the labels of the bounding boxes. Finally, another set of bidirectional LSTM
networks is used to compute and propagate information for predicting edges given the bounding boxes, their labels
and the global context computed so far.

Graph R-CNN [44] combines a network for proposing relations between nodes and an attentional mechanism for
integrating contextual information into the resulting scene graph. Once objects have been detected via a Faster R-CNN
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model [31], a Relation Proposal Network (RePN) is trained to compute a measure of relatedness between object pairs,
allowing for the pruning of unlikely relations. Finally, an attentional Graph Convolutional Network (aGCN) is applied to
the resulting sparsely connected scene graph to propagate contextual information across the graph by updating the
representations of objects and relations based on their neighbours.

Zhang et al. [49] argue that most scene graph parsing approaches suffer from two major issues as a result of
dividing the pipeline into two stages, i.e., an entity detection stage and a predicate prediction stage, and using a
cross-entropy loss over predicate classes. The first issue relates to the confusion of different instances of the same
object class in the scene graph. The second issue arises from the proximity betweenmultiple subject-predicate-object
triplets with the same predicate, which leads to ambiguity. To address these issues, a set of contrastive losses was
proposed which aim to resolve these ambiguities.

Tang et al. [38] attempt to address the problem of bias in scene graph generation, i.e., the consequence of high
imbalance in the distribution of relationships within labelled datasets. For example, they argue that relationships like
“near” tend to dominate in comparison to “behind” or “in front of”, and previous approaches tend to collapse richer
relationships into more general ones, e.g., “person walks on/sits on/lays on beach” are collapsed into “person on
beach”. In order to address this issue, they proposed the use of causal inference. This method can be applied to any
previous approach for removing biased predictions.

Suhail et al. [37] proposed an energy-based learning framework to address the issues of biased predictions based
on the training data, and the lack of structure learning, e.g., by using a cross-entropy loss that ignores dependence
between different objects and their relationships, in many prior approaches. The incorporation of the scene graph
structure acts as an additional constraint which allows for more efficient learning using less data. As it was the case
for the work by Tang et al. [38], this approach can be used in conjunction with other scene graph generation algorithms
to leverage graph structure into the learning pipeline.

Despite the large volume of work on the automatic generation of scene graphs, much progress remains to be
made. On the one hand, a large proportion of the detected relationships tend to be broadly general, e.g., cars have
wheels and people have heads, and as such, they are not interesting from a dialogue point of view. On the other hand,
the proportion of correct triplets (based on the ground-truth) found in the top K results is usually quite low. This does
not necessarily mean that the models are failing but it underlines the difficulties of evaluating models attempting to
automatically generate scene graphs.
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3 Semantic Segmentation and Unknown Object Detection

Here we provide a short update on object detection and classification, compared to D2.4, which is based on seman-
tic scene interpretation. This object detection is used to detect and build a semantic model of the scene, which is
described in the next section.

Identifying unknown objects is crucial for the robot to understand the scene. The problem of classifying a new
object as known or unknown is usually called Out-Of-Distribution Detection (OOD) or Open Set Recognition (OSR).
While the OOD main focus is identifying instances which do not fit the known distribution, OSR focuses on both pre-
serving closed set accuracy and unknown classification. Considering semantic or instance segmentation and object
detection, the central common part we focus on is improving classification in terms of OSR. So our latest experiments
are focused on Open Set Classification.

Recent works on open set recognition use distance to the cluster centre as a measure of anomaly score [8] or
k-NN on a feature space [14]. These methods don’t work well on features produced by the last layer of the closed set
instance segmentation/object detection model. So the features from the right stage of the network need to be used,
and the appropriate loss function needs to be selected to make features from the same known class close to each
other and far from other known class features. We can use a simple idea of minimising the distance to the cluster
centre inside this cluster from [8]. We used a subset of crops from the MS COCO dataset to test this approach. While
for a simple dataset like CIFAR10 (figure 3.1), this method can separate the clusters well, the results on more complex
and unbalanced data are worse. So further investigation needs to be done in this direction to improve our existing
object detection and classification scheme used for semantic object detection and localization in 3Dmaps described
in the next section.

(a) CIFAR10 after 1 epoch. (b) CIFAR10 after 5 epochs.

(c) MS COCO crops after 1 epoch. (d) MS COCO crops after 5 epochs.

Figure 3.1: Visualization of known and unknown (yellow) feature vectors used to measure anomaly score after non-
linear dimensionality reduction using t-SNE.
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4 Object Detection and Localization in 3D Map

4.1 Current Segmentor/Detector

Our current approach is utilizing a meta-classifier, as proposed in [1], extending upon YOLACT [2], an object detection
and instance segmentation network, whose output, given an image, is a vector of tuples (s, c, m, . . . ) containing
information about the individual detections in the image, including the maximal softmax score s, corresponding class
c and segmentation mask m. The meta-classifier accumulates these detections into clusters in 3D, which indicate
potential presence of an object and tracks the distribution of YOLACT classification scores per each cluster (see
fig 4.1) . Based on this distribution, a decision is made to either dismiss the possibility of an object being present, or
updating itsmemory of 3D classifications, classifying it either as one of the 80 known classes present in theMicrosoft
COCO dataset [3] or acknowledging, that the class of the object is unknown. The memory is updated perpetually with
each image, giving the possibility to reason retrospectively, even dismiss an already accepted detection. (See figure
4.2 for visual overview of this process)
The method for clustering detections is similar to that described in [1], assuming objects to be spheres of constant
radius centered around a single point p. While rudimentary and by design introducing certain issues, more on that
below, this method proved to be sufficient for initial testing. The current approach differs slightly from [1] in the way p
is computed and detections are clustered, adjusting for missing depth data in images, and accounting for mask size
when clustering spheres together.

Figure 4.1: Visualization of a single cluster. On the top left is a plot of 3D back-projections of YOLACT detections that
were clustered to this cluster, colored by class and scaled by confidence. The red lines point in the direction of the
camera when detection occurs. Notice, how this direction seems to correlate with the favored class of the detection.
On its right are images of some of the detections. Below is a box plot of detection score distribution.

4.2 Integration with ARI

The overall flow of the 3D semantic instance segmentation on ARI can be seen in figure 4.3. The system takes in as
inputs the RGB image, its corresponding depth image, the camera intrinsic parameters (focal length, principal point),
and the camera pose (rotation, translation) in the map frame of the map built from Visual SLAM.

The ROS [35] workflow is shown in figure 4.4. The tf library function lookupTransform is used to obtain the
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Figure 4.2: Overview of the 3D semantic instance segmentation process

Figure 4.3: High level overview of flow of the 3D instance pipeline in ARI. The data is from the RealSense D435i torso
front camera; The camera pose is computed from the robot pose with the tf library

transformation between the (source) map and the (target) camera frame torso_front_camera_color_optical_frame.
The output is published in the topic /yolact3d/detected_objects_distributions, which is a representation of detected
objects with their probability distribution among possible classes (or unknown class), and their position in the map
frame. This topic publishes messages of a custom ROS msg type of the form:

Header header

object[] threeDobjects

where object is a msg of the form:
Header header

string[] objects

float32[] probabilities

geometry_msgs/Point position

Figure 4.4: ROS workflow
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Figure 4.5: Data Collection where ARI was made to move autonomously in circular trajectories around the objects

4.3 Experiments

Here we describe first experiments with object detection and localization in 3D maps integrated in ARI.

4.3.1 Data Collection

Procedure

1. The room where the data is to be collected is mapped with ARI. Once complete, this map is loaded and ARI is
set to localization mode.

2. Objects of varying sizes such as a skateboard, computer mouse, water bottle, coffee mug, figurines, etc., are
placed on the floor.

3. ARI is manually controlled to move around and record relevant topics to a rosbag.

With this procedure, data collection was performed and the algorithm. However, the results were poor since the
data was found to be of poor quality. The manual motion of ARI did not capture the objects sufficiently well, and the
objects in 3D space could not be clustered as separate objects.

As a result, a modified procedure was followed for a new round of data collection.

2. Objects of varying sizes are placed around the floor near in a small radius around a point. See fig 4.5

3. ARI navigates autonomously in a trajectory of concentric circles, looking towards the center, of multiple radii
around the objects. See fig 4.6

The circular trajectory ensures that ARI captures the objects from all orientation, andmultiple radii makes ARI view
the objects from varying distances. ARI moves to points along the circle, facing the center of the circle (where the
objects are) at user specified intervals.

4.3.2 Topics Recorded

The following topics were recorded in rosbags:

1. front fisheye image (not used for current vision): /front_camera/fisheye/image_raw/compressed

2. Robot pose in map: /robot_pose

3. Tf: /tf and /tf_static

4. Torso front camera image: /torso_front_camera/aligned_depth_to_color/image_raw

5. Torso front camera parameters: /torso_front_camera/color/camera_info
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Figure 4.6: Circular trajectory around objects with goal poses along the circle looking at the objects. This ensures that
ARI captures the objects at different angles, and viewpoints

4.4 Results

Overall, three sets of data was recorded (4.7), each observed in an interactive data visualization interface (example in
figure 4.8) and evaluated, due to the small scale of the test, manually.

Figure 4.7: The three observed data recordings

Used metric for measuring performance of the model consisted of recall (eq:rec) and precision (eq:pr) at both
differentiating unknown from known and detecting that an object is present. As every known class was detected and
classified correctly, no metric was required for known class classification.

Precision =
True Positives

True Positives+ False Positives
(4.1)

Recall =
True Positives

True Positives+ False Negatives
(4.2)

Results are presented in figure 4.9.
Probable cause of failure cases in object detection is the previously mentioned representation of objects as

spheres of constant radius, which as consequence may result in one object having multiple clusters representing
it (this is treated as false positive detection), or, having YOLACT detections of another object clustered to the cluster
which represents it. The first case was especially notable notable in Data 2 as it contained an open umbrella, which
spans a relatively large area, the second case was rare enough to not cause significant interference in most classi-
fication decisions, however there are two cases, where an object was not detected as its YOLACT detections were
clustered to clusters representing other objects.
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Figure 4.8: The interface used for evaluation. Top left contains an interactive 3D visualization of camera and cluster
positions. Below is a visualization of detections in a specific cluster from figure 1. Top right contains an image with a
specific detections’ bounding box. Below is YOLACT softmax score for that detection.

Figure 4.9: Results of the experiment. Above is the confusion matrix for Known vs Unknown classification. Below are
the precision and recall scores for object detection (not classification) and classification of Unknown among Known
(Unknown is regarded as positive).

Despite these addressable errors, it seems that our method is a good starting point for the task of open-world
segmentation / detection and stands as a proof of concept for a meta-classification approach.
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5 Semantic Scene Graphs for Visual Grounded Dialogue

It is crucial for social robots in HRI to be able to hold coherent conversations in visual/spatial situations where objects
and their relations are critical for task success (e.g. directions to a place or object). For SPRING we explore to what
extent we can use more visually grounded semantic representations of utterances within the multimodal dialogue
context developed in the system. Our video demonstration at HRI 20211 [29], was a first step in this direction as it
uses deep learning for object recognition to create spatial representations which are used to answer questions from
the user.

The goal of this module is to leverage semantic scene graphs to guide visually grounded conversations (the pro-
posed system architecture is illustrated in Fig. 5.1). Concretely, by having access to a graph representation of the
visual scene, the system should be able to reason about the location of objects in order to answer user queries as
well as to producemeaningful descriptions. Moreover, by combining such abilities with task-based and open dialogue,
the system should be able to engage in richer conversations with its users. However, there are many challenges to
overcome when using scene graphs. When automatically generating them, the results tend to be extremely noisy with
many misclassifications and the estimation of incorrect relationships between objects. Furthermore, the datasets
on which the scene graph generation models are trained are usually biased and incomplete, i.e., some relationships
are more predominant than others and not every possible relation is specified. In particular, many of the indicated
relationships tend to refer to the description of structural relationships which are generally known to be true, e.g., cars
havewheels and people have heads, and thusmay not be informative from a dialogue perspective. Other relationships
may only be interesting based on the context, e.g., the fact that a person is wearing a shirt is not interesting unless
we are looking for a person wearing a particular type of shirt. Likewise, a car missing a wheel is more interesting than
the fact that cars usually have four wheels.

Another related problem stems from the fact that multiple relationships exist for the same pair of objects and
determining which one, if any, is the correct one is not trivial. Sometimes, relationships with high confidence are
wrong whereas relationships with low confidence can be right. This also applies to the results of object detection
and classification. In some cases, interesting objects can have a low confidence score and in many cases, there are
multiple detection results for the same object.

Figure 5.1: Proposed system architecture for visually grounded situated dialogue.

1https://www.youtube.com/watch?v=eY_BNxwrlPg
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5.1 Scene Graph Generation

The proposed approach generates scene graphs by an end-to-end scene graph generation model Relation Trans-
former (RelTR) [10]. RelTR (Fig. 5.2) is a one-stage end-to-end framework for scene graph generation based on the
Transformer encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder
infers a fixed-size set of triplets <subject-predicate-object> using different types of attention mechanisms with cou-
pled subject and object queries.

Compared with other methods, RelTR achieves state-of-the-art performance using only visual appearance, with
very few model parameters and fast inference. RelTR is a one-stage method that predicts sparse scene graphs di-
rectly only using visual appearance without combining entities and labeling all possible predicates, in contrast to the
previous scene graph generation methods, presented in section 2.1.

The model was trained on Visual Genome [19], a large dataset of images annotated with objects, their attributes,
and relationships to other objects, natural language descriptions, and question/answer pairs. In order to prune the
scene graph, we currently set confidence thresholds for both object detections and relationships. Additionally, we
keep a list of “relevant categories” that is used to filter the scene graph prior to pruning. RelTR can predict the subjects
(blue), objects (orange) and their predicates simultaneously with learned subject and object queries (Fig. 5.3).

Currently, the scene graph generation module is implemented as a ROS action server. Given an empty goal, the
server processes the current image from the robot’s camera feed and returns the scene graph information by means
of a custom message that contains fields for the object bounding boxes (bbox), labels (bbox_labels) and scores
(bbox_scores), and for the relationship pairs (rel_pairs), their labels (rel_labels) and scores (rel_scores). By interpreting
this information, an action client can produce dialogue responses that leverage the semantic information available
in the scene graph. Fig. 5.4 shows an example of an action client interacting with the scene graph server. The rela-
tionship pairs contain the indices of the interacting objects as they appear in the corresponding data structures, i.e.,
bbox, bbox_labels and bbox_scores. For example, if the first relationship pair (index 0 in rel_pairs) is (1,3), that means
that the objects in the second (index 1) and fourth (index 3) positions interact through the first relationship listed in
rel_labels.

Figure 5.2: RelTR encoder-decoder architecture [10]. A pair of subject and object representations with attention heat
maps is decoded into a triplet <subject-predicate-object> by feed forward networks (FFNs). CSA, DVA and DEA stand
for Coupled Self-Attention, Decoupled Visual Attention, and Decoupled Entity Attention. Ep, Et, Es, and Eo are the
positional, triplet, subject, and object encodings respectively.

Figure 5.3: Visual Dialogue examples with RelTR and ARI robot cameras in a mock-up hospital reception waiting room
at HWU.
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Figure 5.4: Example of action client parsing the information available in the scene graph.

5.2 Response Generation

As depicted in Fig. 5.1, the ROS Action Servers interact with the PNP Server which sends requests to the former and
relies the responses to the dialogue system through the Arbiter. An earlier version of the system relied on manually
created scene graphs. An action server would then receive an image ID, retrieve the corresponding scene graph and
generate a response based on the object of interest specified by the user, and its location according to the scene
graph. The current version instead consists of a response generation action server that communicates with the PNP
server and also acts as a client to the scene graph action server (see Fig. 5.5). In this way, whenever the response
generation action server receives a request from the PNP server, it calls the scene graph action server which provides
the graph of the current scene. The response generation is then carried out in the same way it was for the manually
created scene graphs.

PNP Server Response Generation
Server

Scene Generation
Server

Figure 5.5: Communication between the different servers involved in extracting the scene graph and generating a
response from it.

5.2.1 Identified Issues

The way the system’s response is currently being generated, i.e., via rules, has many limitations. First of all, it ag-
gregates relationships concerning the target object in a single sentence assuming that the corresponding predicates
describe spatial relationships. However, predicates can describe richer relationships, e.g., possession, mereological
properties, state, etc. For instance, consider an example of a scene graph (corresponding to the scene depicted in
Fig. 5.6) represented by the following triplets (object, predicate, object):

(0_table has 3_handle)

(1_cup has 3_handle)

(1_cup near 2_bowl)
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Figure 5.6: Example of scene depicting non-spatial relationships.

(2_bowl sitting on 0_table)

(1_cup sitting on 0_table)

(2_bowl near 1_cup)

(0_table holding 1_cup)

(0_table with 2_bowl)

(3_handle of 1_cup)

(2_bowl has 3_handle)

(3_handle on 0_table)

The snippet of code that produces the output utterance is given below:
relations = [item for item in scene_graph if item [0] == goal.object_frame]
if not relations:

self._result.located = False
else:

self._result.located = True
self._result.quantity = 1
for idx , rel in enumerate(relations):

if not idx:
self._result.spatial_relation = rel [2]
self._result.location = "the {}".format(rel [1])

else:
self._result.location += " {} the {}".format(rel[2], rel [1])

where relations is simply the list of triplets given above, goal.object_frame represents the object referred to by the
user, and self._result stores the first relationship for the target object and its location, which is the result of aggre-
gating every other available relationship for the target object. For example, assuming we ignore objects’ IDs (i.e.,
the preceding numbers in the object names), if the user asked for the cup, then self._result.spatial_relation would be
has, and self._result.location would be the handle near the bowl sitting on the table. Then, the dialogue system, would
produce a response like “There is a cup has the handle near the bowl sitting on the table.” because it assumes that
self._result.spatial_relation denotes a spatial relationship and self._result.location is an actual location. Of course, this
could be addressed by filtering relationships based on their type but this would merely be putting a patch over the
issue. Additionally, in the example shown above, we can see that the scene graphs tend to be corrupted with wrong
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relationships, e.g., (0_table has 3_handle), which highlights the limitations of current automatic scene generation al-
gorithms.

The second issue relates to the fact that we are currently not distinguishing among objects of the same type.
For instance, Fig. 5.4 shows a scene with two bowls and a cup placed on a table. The retrieved graph for this scene
according to the used model is:

(1_bowl near 2_bowl)

(2_bowl sitting on 0_table)

(1_bowl sitting on 0_table)

(3_cup near 2_bowl)

(1_bowl near 3_cup)

(3_cup near 1_bowl)

(3_cup sitting on 0_table)

If the user asks for the cup, then there will be two relationships (cup, near, bowl) and the resulting output utterance
will be something like “There is a cup near the bowl near the bowl on the table.”. In order to address this issue for now,
we remove duplicate relationships (without accounting for the object’s IDs) although this does not include symmetrical
relationships. More elegant solutions could involve distinguishing between the different objects by using attributes.
However, it has to be noted that depending on the context, some relationships may not be relevant and should be
avoided when producing the output utterance. Likewise, in the previous example it is unnecessary to refer to both
bowls when describing the location of the cup even if we were able to distinguish between them. In other words,
saying “There is a cup near the blue bowl on the table.” is preferred to saying “There is a cup near the blue bowl near
the yellow bowl on the table.”.

5.2.2 Scene Graph Pruning

As illustrated above, there are several areas for improvement by future work is the response generation. Once the
scene graph has been relayed to the dialogue system, it is necessary to select the most relevant triplet based on
dialogue context and generate a coherent Natural Language response.

In future work, such tasks could be treated as a conditional generation problem for Vision-and-Language models
such as VL-T5 [9], given suitable data for fine-tuning.

Rule-Based Pruning

As discussed earlier, we currently set confidence thresholds to prune the scene graph. This could be complemented
with a trained model or additional heuristics which should allow to reduce the thresholds values without significantly
corrupting the graph. An example of such heuristics could be the identification of multiple detection results corre-
sponding to the same object and keeping the one with the highest classification score or with the largest bounding
box. In this case, highly overlapping bounding boxes with the same associated label would be merged such that a
single result is kept. This involves also merging all the associated data, e.g., relationships to other objects.

Binary Classification of Triplets

Another potential way to address the issues identified before is to train a binary classifier to estimate which triplets
may be relevant and which may not. Such a strategy requires the creation of a dataset based on the scene graph
results given by the chosen model. Alternatively, an existing dataset (e.g., the one used to train the model to detect
scene graphs) could be used where the ground-truth provides the positive examples and every other triplet output by
the model is set as a negative example.
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6 Conclusions

The software modules describe in this deliverable will be made available on the SPRING project Gitlab repositories
for Work Package 2 [33], object detection and localization in 3D map based on semantic segmentation and unknown
object detection (Chapters 3 and 4), and Work Package 5 [34], semantic scene graphs for visual grounded dialogue
(Chapter 5). The software packages use ROS (Robotics Operating System) [35] to communicate with each other and
with the modules developed in the other work packages.

These will be available to the public for the duration specified in the SPRING project proposal. As per Euro-
pean Commission requirements, the repository will be available to the public for a duration of at least four years
after the end of the SPRING project. People can request access to the software from the project coordinator at
spring-coord@inria.fr.

Next we plan to connect object detection and localization in 3Dmap based on semantic segmentationwith seman-
tic scene graphs for visual grounded dialogue to be able to detect unknown objects and learn their labels by inquiring
users. This open new challenges in sharing the knowledge of represented in a robot with the knowledge of human
users.
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