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1 Introduction

This deliverable is part of WP4 of the H2020 SPRING project. The objective of WP4 is “developing tech-

nologies for analysing human behaviours from multi-modal sensors robotic platforms.” Three main software
modules are required to enable the robot to understand human behavior:

• T4.1 Describing Humans, where the goal is to provide a description of the status of each person;

• T4.2 Individual & Group Behaviour Recognition, where the goal is to classify human behaviours both at
individual and at group-level;

• T4.3 A↵ect & Robot Acceptance Analysis, where the goal is to analyze the a↵ective state of the user(s)
interacting with the robot, and specifically the level of acceptance of the robot.

D4.1 describes the methods and the software used for the T4.1 task, namely “describing humans.” All the
experimental results reported in this document have been obtained on large-scale public datasets in order to
provide both qualitative and quantitative evaluation.

All software developed in the SPRING project is expected to run on the robotic platform ARI, whose
visual perception capabilities have been enhanced specifically for SPRING. However, the COVID-19 pandemic
still constrains the way of conducting experiments in our research laboratories. In particular, the ARI robot
arrived later than what was originally planned and we still have limited access to it. As a consequence, we are
unable now to report the performance of our software modules in realistic environments. In addition, we have
not been able yet to integrate our modules with the ones from other workpackages. For instance, we have not
assigned the tracking ID of the pedestrian to the detected faces yet (see Section 3).

However, we have made progress in other directions, in order to compensate as much as possible the
overall delays in the WP4 progress, and in the whole SPRING project. In this respect, in addition to the
methodology and software used for T4.1, we describe here also some ongoing research. In particular, we discuss
the techniques INRIA has developed for face frontalization, which will be used in our future work (see Section
4.1). Besides, we have started to work on some modules which are supposed to be implemented in the future
to compensate for the delay, such as facial expression recognition, which is related to T4.3 (see Section 4.2).

This document is organized as follows. Section 2 describes the overall architecture for describing humans, as
well as each of the modules. Then, Section 3 discusses dependencies of D4.1 with respect to other workpackages,
and Section 4 presents ongoing research. The document ends drawing some conclusions and future work. The
software is being updated in SPRING-WP4-Repository. As per European Commission requirements, the
repository will be available to the public for a duration of at least four years after the end of the SPRING
project. People can request access to the software to the project coordinator at spring-coord@inria.fr. The
software packages will use ROS (Robotics Operating System) to communicate with each other and with the
modules developed in the other workpackages.

2 Modular Architecture for Face Analysis

2.1 Overall Architecture

The goal of T4.1 - Describing Humans (M7 - M21) is to devise approaches to provide a description of the
status of each person. That is, to estimate the 3D pose of the user(s) interacting with the robot from visual data
and to implement state-of-the-art solutions for face analysis (detection and recognition), head pose estimation,
facial landmarks extraction and prediction of soft biometric patterns (age, gender, etc.). Transfer learning
and domain adaptation techniques will be considered within a deep learning framework in order to exploit
synthetic data from T2.2 and publicly available datasets, thus avoiding the need of annotating novel data in
the considered egocentric camera setting. The use of audio signals as well as the information derived from the
3D semantic maps of WP2 will contribute to improve the recognition accuracy of human pose estimates and
of soft-biometric patterns. WP4 has 4 main outcomes w.r.t T4.1:
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• Face Detection and Facial Keypoints Estimation: from an RGB-Image, the task is to provide
bounding boxes encompassing each human face in the scene. For each face, this module must also provide
semantic keypoints to be used for facial expression analysis, biometric analysis and face verification.

• Face Verification & Soft Biometric Analysis (also called state estimation): this module needs to
be able to determine whether two faces belong to the same person. In the meanwhile, it needs to infer
soft biometrics, such as age and gender, based on RGB images. Face verification for partially occluded
faces will be subject of future work.

• Facial Mask Detection: the objective of this module is to determine whether or not a face is wearing
a mask.

• Human Pose Estimation: from an RGB-Image, this modules provides semantic keypoints correspond-
ing to body and head pose for each human in the scene.

Detection & 
Tracking (WP3)

Speech Diarisation 
& Separation
(WP3)

Soft Biometrics 
(WP T4.1)
Identity, Age, Gender

Face Detection 
(WP T4.1)
2D face bounding boxes, 
facial landmarks

Nonverbal Behavior 
(WP T4.3)
Facial expression

F-Formations 
(WP T4.2)
List of group assignment 
of each person

Pose Estimation 
(WP T4.1)
2D body joints

Activity Estimation 
(WP T4.2)
Actions

Tracking
ID

Done

Future work

Ongoing work

Face Mask Detector 
(WP T4.1)

Figure 1: Diagram of the overall architecture. The tracking IDs are obtained from WP3. The IDs will be
assigned to the detected faces. Besides, the tracking IDs will also be linked to the following tasks, i.e., 3D pose
estimation, activity estimation, formation estimation, and non-verbal behavior, e.g., expression recognition.

The overall architecture for human behavior analysis is shown in Figure 1. For the time being the face
analysis is independent from WP3, hence the tracking ID obtained from WP3 will be assigned to the detected
faces in the second stage. The blue boxes are the modules which have already been implemented, and the green
boxes are the modules which will be implemented in the future. In the following subsections, we describe in
more detail each module, highlighting the purpose, the input/output, the dependencies, the method we used
and the current status of development.

2.2 Face detection

The purpose of face detection module is to detect/localize faces in a given image. Locating a face means
finding the coordinates of the face, whereas localization refers to demarcating the extent of the face using a
bounding box. Face detection also contributes to the soft biometric module, together with the face recognition
module. This module is used to detect the face of a person who walks by. After detecting the faces, we will
then calculate the gender, and age range of the face. It is also used as part of the facial expression/emotion
inference module. Expression inference can be used to help us understand the feelings of the people around
the robot. For instance, we can tell whether a person is smiling or has closed eyes. Besides, after localizing the
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face, we can crop out the face and use other softwares to compute the landmarks/coordinates of the eyes, ears,
cheeks, nose, and mouth. Based on the detected facial landmarks, we can parse the face into di↵erent facial
action units according to the facial action coding system which can be used to define the micro expressions.

To sum up, face detection is a non-trivial computer vision problem. Although detecting faces can be easily
solved by humans, it is very challenging for computers given the dynamic nature of faces. For instances, faces
in the images captured in the wild usually have di↵erent orientations or angles they are facing, illumination
conditions, self occlusions by glasses, masks and hats, etc.

Figure 2: Pipeline of MTCNN [1].

Figure 3: Examples of detected faces using MTCNN [1].

Method. Recently, with the development of artificial intelligence, especially in the domain of deep learning,
big progress has been made for face detection. To apply face detection to videos, however, we need to process
video frames in real time. State-of-the-art face detection can be achieved using a Multi-task Cascade CNN
via the MTCNN library [1]. MTCNN is a deep cascaded multi-task framework which exploits the inherent
correlation between detection and alignment to boost up its performance. As shown in Figure 2, this frame-
work leverages a cascaded architecture with three stages of carefully designed deep convolutional networks
to predict face and landmark location in a coarse-to-fine manner. In particular, Multi-task Cascaded Convolu-
tional Networks (MTCNN) is a framework developed as a solution for both face detection and face alignment.
The process consists of three stages of convolutional networks that are able to recognize faces and landmark
location such as eyes, nose, and mouth. In the first stage, MTCNN uses a shallow CNN to quickly produce
candidate windows. In the second stage it refines the proposed candidate windows through a more complex
CNN. And lastly, in the third stage it uses a third CNN, more complex than the others, to further refine the
result and output facial landmark positions.

Stage 1: The Proposal Network (P-Net)
This first stage is a fully convolutional network (FCN). This Proposal Network is used to obtain candidate
windows and their bounding box regression vectors. Bounding box regression is a popular technique which
is used in P-Net to predict the localization of face boxes. After obtaining the bounding box vectors, some
refinement is done to combine overlapping regions. The final output of this stage is all candidate windows after
refinement to downsize the volume of candidates.

Stage 2: The Refine Network (R-Net)
All candidates from the P-Net are fed into the Refine Network. Notice that this network is a CNN. The R-Net
further reduces the number of candidates, performs calibration with bounding box regression and employs
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non-maximum suppression (NMS) to merge overlapping candidates. The R-Net outputs whether the input is
a face or not, a 4-element vector which is the bounding box for the face, and a 10-element vector for facial
landmark localization.

Stage 3: The Output Network (O-Net)
This stage is similar to the R-Net, but this Output Network aims to describe the face in more detail and output
the five facial landmarks’ positions for eyes, nose and mouth.

Some detected faces are shown in Figure 2. MTCNN is also very fast on CPU. Given the good performance
of MTCNN and its fast speed, we rely on MTCNN [1] library for face detection which can detect faces in videos
in real time. The input of the face detection module are RGB images with bounding boxes of the detected
persons. The output of the module is a list of bounding boxes with confidence scores. Now this module has
been integrated with ROS.

Figure 4: Mask detection model which is based on SSD [2]. The image is from https://github.com/

AIZOOTech/FaceMaskDetection.

2.3 Face-mask detection

Now we are in the pandemic period of COVID-19 and it is usual for people to wear masks as a protection
measure. Hence, there is growing need for mask detection, which in turn may have influence on the face
recognition task. The purpose of face-mask detection module is to detect/localize faces and to establish
whether a given face is wearing a protection mask.
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Figure 5: Face and Mask Detection

Method We started from the open source api provided by AIZOOTech, the link of their github implemen-
tation is https://github.com/AIZOOTech/FaceMaskDetection (The code is under MIT license). For the ros
integration, A ROS wrapper was developed by us for integration. The prototype of mask detection model is
Single Shot MultiBox Detector [2]. The model architecture is shown in Figure 4.

Single Shot MultiBox Detector (SSD) was originally designed for real-time object detection, as the tradi-
tional object detection algorithms, such as the Region-Convolutional Neural Network (R-CNN) [3], are very
slow. Even though its successors fast R-CNN [4] and faster R-CNN [5] propose improvements to the seminal
work to develop a faster network and the achievements are truly amazing, none of them manage to create a
real-time object detector. To address the bottlenecks of R-CNN and its successors, two other models have been
proposed which enable real-time object detection. One of the models is YOLO (You Only Look Once) [6] and
the other one is SSD MultiBox (Single Shot Detector) [2].

Single Shot means that the tasks of object localization and classification are done in a single forward pass of
the network. MultiBox is the name of a technique for bounding box regression. Detector represents the object
detector which also classifies those detected objects. SSD’s backbone is VGG-16 without the fully connected
layers. VGG-16 was used because it has good performance in image classification tasks and its popularity for
other problems in which transfer learning helps in improving results. Besides, some auxiliary convolutional
layers (from conv6 onwards) were added, thus enabling to extract features at multiple scales and progressively
decrease the size of the input to each subsequent layer. However, 80% of the time is spent on the base VGG-16
network: this means that with a faster and equally accurate network SSD’s performance could be even better.
For e�ciency, the VGG-16 base has been replaced with a lighter network as shown in Figure 4.

Figure 5 shows some examples of the detected masks. The input is RGB image & bounding box of the
detected faces. The output is a list of bounding boxes with detected faces and labels for faces with mask and
without mask with the confidence scores. Now the algorithm has been integrated with ROS.

2.4 Soft biometric analysis

2.4.1 Identification: Face verification

The task of this module is to check whether the target person is known by the robot or not. This is done by
matching the person’s face to a dataset of known faces and determining whether a positive match is found. The
state-of-the-art method is FaceNet [7]. It directly learns a mapping from face images to a compact Euclidean
space where distances directly correspond to a measure of face similarity. Once this space has been produced,
tasks such as face recognition, verification and clustering can be easily implemented using standard techniques
with FaceNet embeddings as feature vectors. FaceNet uses a deep convolutional network trained to directly
optimize the embedding itself. To train, we use triplets of roughly aligned matching/non-matching face patches
generated using an online triplet mining method. The benefit of this approach is much greater representational
e�ciency: it achieves state-of-the-art face recognition performance using only 128-bytes per face. On the widely
used Labeled Faces in the Wild (LFW) dataset, FaceNet achieves the accuracy of 99.63%. On YouTube Faces
DB it achieves 95.12%. FaceNet also introduces the concept of harmonic embeddings, and a harmonic triplet
loss, which describe di↵erent versions of face embeddings (produced by di↵erent networks) that are compatible
to each other and allow for direct comparison between each other.

As shown in Figure 7, the triplet has three points, i.e., anchor point, positive point, and negative point.
The triplet loss encourages the positive pair to be close to each other, while the negative pair is encouraged to
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Figure 6: Face Verification. (testing images are from public benchmarks https://team.inria.fr/perception/
avdiar.)

Figure 7: Triplet Loss used in FaceNet [7].

be far away from each other. This is achieved by the following constraint:

kf(xa
i )� f(xp

i )k
2
2 + ↵ < kf(xa

i )� f(xn
i )k22 (1)

in which xa
i , x

p
i , x

n
i denote the anchor point, positive point, and negative point. This equation ensures that an

image xa
i (anchor) of a specific person is closer to all other images xp

i (positive) of the same person than it
is to any image xn

i (negative) of any other person. This is visualized in Figure 7. Here ↵ is a margin that is
enforced between positive and negative pairs. However, the backbone of FaceNet is very large. To alleviate the
computing burden of the robot, we use on Knowledge Distillation [8] method to learn a small network which
has a similar performance as FaceNet.

Method We use the Knowledge Distillation [8] method to transfer the knowledge learned from the teacher
network FaceNet [7] to the student network ‘MobileNet V3 small sp’ [9]. SP models are those that instead of
having only the output layer set to match the number of classes of VGGFace2, they have a completely di↵erent
classification module matching the one of FaceNet.

The teacher network is very large with 27.9 million parameters so that it is very time consuming to be
executed. The student model is much lighter with 6.7 million parameters while has comparable performance
with the teacher network. It is very fast. Therefore, the student network is more suitable for our task which
has limited computing resources. The MobileNet takes as input the RGB image, and computes its embeddings
(i.e, deep features), and then computes the distance between the embeddings and the ones of the reference
images stored in the dataset. The identity is determined by checking whether the distance between itself and
the input RGB image belows a certain threshold. If the distance is smaller than the threshold, we can say that
they have the same identity. The training dataset is VGGFace2 [10].

• The match accuracy of the teacher on the test set is 99.9% and the accuracy of our student is 98.1%.

• The speed of the teacher on the CPU (Ryzen 7) is 36.0 ms/image and the performance of our student
is 9 ms/image.
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Figure 8: Pose Estimation

We have also tested MobileNetV2 sp [11] with 7.3 million parameters. It can reach the accuracy of 99.1%,
but it consumes more time which is 24.8 ms/image. We have also tested other MobileNets, such as MobileNet
V2, MobileNet V2 sp, MobileNet V3 large, MobileNet V3 large sp, etc. Finally, we select MobileNet V3 small
sp [9] as our model as it balances well between the performance and speed. Last but not least, by increasing
the size of the training set, we have further improved its match accuracy to 99.6%.

The face verification results are shown in Figure 6 with the id number in the gallery. The input to the face
verification module is a RGB image patch, and the output is the ID of the matched face or ‘unknown’. For the
prepossessing (localization of the face), this module requires the output of face pose estimation. It has been
integrated with ROS.

2.4.2 Age and Gender

Together with face recognition, we also need to extract other biometric information (approximated age and
gender) of a target person. Even though there are other models for facial biometric information extraction, this
will consume a lot of additional computing resources. To solve this problem, we use transfer learning technique.
To be specific, we rely on the pretrained face verification model to extract features and add additional two
small branches for two new tasks, namely, age and gender estimation. The reason is that face verification can
extract discriminative features and these features may also reflect the age and gender information. Therefore,
we add two extra classifiers to the FaceNet while its backbone remains the same. The details are as follows.

Method. Based on the model obtained from face verification, we have added another two classifiers at
the end of the last convolutional layer of the deep network for the other two tasks, i.e., age estimation and
gender classification. The deep network is MobileNet V3 small. When training the network, the parameters of
‘MobileNet V3 small sp’ backbone remain the same and we only update the parameters in the classifiers based
on the loss from gender and age. The dataset used for the training is AgeDB [12] dataset which contains both
the age and gender label for the face. The input is a RGB image with facial key-points. The output is a list
of biometric information (i.e., age and gender).For the privacy issues, we will not show the experimetal results
here, but the experimental results show that the age and gender estimator work well. This module has been
integrated with ROS.

2.5 Pose estimation

The task of this module is to estimate the pose of each person detected by the robot, where a pose is represented
through localization of semantic key-points of a person’s body (e.g., left hand, left elbow, left shoulder, etc). In
particular, the pose representation with respect to an image consists of the pixel coordinates of each detected
semantic keypoint. Realtime multi-person 2D pose estimation is a key component in enabling machines to have
an understanding of people in images and videos. We rely on OpnePose [13] for this task. This method uses a
nonparametric representation, which is referred to as Part A�nity Fields (PAFs), to learn to associate body
parts with individuals in the image. This bottom-up system achieves high accuracy and realtime performance,
regardless of the number of people in the image. In previous work, PAFs and body part location estimation
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were refined simultaneously across training stages. It is demonstrated that a PAF-only refinement rather than
both PAF and body part location refinement results in a substantial increase in both runtime performance and
accuracy. The combined detector not only reduces the inference time compared to running them sequentially,
but also maintains the accuracy of each component individually.

Method. We use the open source API provided by OpenPose from Github. The link is https://github.com/
CMU-Perceptual-Computing-Lab/openpose. Since it o↵ers good performance already, we use it directly. The
input is a RGB image and the output is a list of body joints and facial landmarks. The examples are shown
in Figure 8. This module has been integrated with ROS. For the ROS integration we use the ros-wrapper
implementation pointed by the o�cial CMU repository: https://github.com/ravijo/ros_openpose. The
code is under MIT license. For the details of the method, please check [13].

3 Dependency of Previous Works

3.1 Entity(person) tracking from WP3

The purpose of this module is to track the position of 2D entities among a sequence of frames. Given a
bounding box on a reference frame and a sequence of following frames, the module attempts to re-locate the
entity pointed by the bounding box at the following frames. If successful, the module returns the location of
the bounding box in the new frame, otherwise it returns a flag indicating failure.

Method We have not received this module implemented from WP3 yet. Therefore, as a substitute, we
developed a wrapper for the opencv tracking API which is implemented based on [14]. The input includes a
reference frame with a bounding box, and a sequence of frames. The output is the position of the bounding
box for each frame and the success flag per frame. This module has been integrated with ROS.
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4 Ongoing Works

4.1 Face Frontalization

Consider a typical HRI scenario that involves a robot and a group of persons. Participants inherently move their
head, e.g. nodding. Consequently, non-rigid facial movement analysis is perturbed by rigid head movements.
It is therefore important to separate facial movements from head movements. This can be achieved via face
frontalization which consists of synthesizing, over time, a frontal view of a face from an arbitrary view.

Recently, it has been shown that face recognition from frontal views yields better performance than face
recognition from unconstrained views [15, 16, 17, 18, 19, 20]. It is worth noticing that face recognition requires
expression-free frontalization, while face expression recognition and visual speech recognition (or lip reading),
e.g. [21, 22, 23, 24] require expression-preserving frontalization.

We address face frontalization as follows (please consult [25] for details). We detect a face and we extract
3D face landmarks. The latter is also referred to as 3D face alignment (3DFA) and a number of DNN architec-
tures have been recently proposed. Such a 3DFA-DNN predicts the image-centred 3D coordinates of J = 68
landmarks, X1:J = {Xj}Jj=1 ⇢ R3. We also consider a frontal 3D deformable face model which consists of a
3D triangulated mesh whose vertices are conditioned by the parameters of a shape model. Let this model be

V̂ n = V n +Wns, 8n 2 {1 . . . N}, (2)

where V 1:N ⇢ R3 are the vertices of a mean (neutral) shape, W1:N ⇢ R3⇥K are reconstruction matrices, and
s 2 RK is a low dimensional embedding of the vertex set, with K ⌧ 3N . s is the vector of parameters that
control the shape deformations.

In order to estimate the scale �, 3D rotation matrix R, and 3D translation vector t, between the input
(arbitrarily viewed) face and a frontal view of the same face, we align the predicted set of landmarks, X1:J

with a corresponding set V 1:J which is a subset of V 1:N just defined. Clearly, the mapping between these two
point sets doesn’t hold exactly. We have

V j = �RXj + t+ ej , 8j 2 {1 . . . J}. (3)

The errors e1:J embed the fact that the landmarks X1:J are a↵ected by non-rigid facial deformations as well as
by localization errors. Rather than attempting to simultaneously estimate the rigid and non-rigid parameters,
we propose to start by estimating the rigid parameters using robust statistics. In practice we assume that
e1:J are samples of a random variable e drawn from a robust probability distribution function (pdf). Then
the problem is cast into maximum likelihood estimation (MLE), or equivalently into the minimization of the
negative of the log-likelihood, min✓ L(✓), with:

L(✓|X1:J ,V j) = �1
2

JX

j=1

logP (ej ;✓). (4)

In practice, we propose to use the generalized Student-t distribution [26]:

P (e;✓) =

Z 1

0

N (e; 0, w�1⌃)G(w;µ, ⌫)dw (5)

where N (·; 0,⌃) is the zero-mean normal distribution and ⌃ 2 R3⇥3 is a covariance matrix. The random
latent variable w 2 R+ is drawn from the gamma distribution G(·;µ, ⌫), and it plays the role of a precision.
Therefore, the samples w1:J of this variable characterize the landmark locations: the higher their values the
more reliable the associated landmarks. The model’s rigid and statistical parameters are

✓ = {�,R, t,⌃, µ, ⌫}. (6)

Direct minimization of (4) is intractable. Expectation-maximization (EM) is therefore adopted, namely the
negative log-likelihood (4) is replaced with the expected complete-data negative log-likelihood :

EW [� logP (X1:J ,V j , w1:J |X1:J ,V j ;✓)]. (7)
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In practice, EM alternates between the estimation of the posteriors of the precision means, w1:J and the
estimation of the parameters (6) via minimization of (7) which yields [25]:

✓⇤ = argmin
✓

1
2

JX

j=1

�
wjkV j � �RXj � tk2⌃ + log |⌃|

�
. (8)

While it iterates, the algorithm assigns (i) high precision values to landmarks that obey a rigid transformation
and (ii) low values to landmarks a↵ected by detection errors or by non-rigid motion: therefore the contribution
to (8) of the former is stronger than the contribution of the latter. Once the parameters are thus estimated, the
rigid transformation is applied to X1:J in order to obtain expression-preserving frontalized landmarks, whose
coordinates are denoted Y 1:J ⇢ R3, namely:

Y j = �RXj + t, 8j 2 {1 . . . J}. (9)

It is now possible to fit the deformable shape model (2) to the weighted frontalized landmarks in order to
obtain optimal values for the shape parameters, namely:

s⇤ = argmin
s

1
2

JX

j=1

wjkY j � (V j +Wjs)k2 (10)

Figure 9: Overview of the proposed method. 3D landmarks ex-
tracted from a face (bottom-left) are aligned with 3D vertices as-
sociated with a frontal model (top-left). This deformable model
is fitted to the frontalized landmarks (bottom-middle), yielding
a deformed model aligned with the landmarks (top-middle). A
dense depth map is computed by interpolating the 3D vertices of
the triangulated mesh of the deformed model (top-right). This
depth map is combined with the input face which is warped onto
the frontal view (bottom-right). The occluded face regions are
displayed in white.

This enables us to build a frontal dense
map associated with the 3D mesh and to
warp the pixel intensities from the input
image to the frontal one. Since the shape
vertices form a triangulated mesh, so do
their image (2D) projections. We com-
pute the barycentric coordinates of each
pixel that lies inside a projected trian-
gle and use these coordinates to interpo-
late the depth. Thus, there is a depth
value associated with each face pixel, and
let (a1, a2, A3) be the image coordinates
and the depth of 3D face point A, respec-
tively. The final step consists of warp-
ing the input-face pixel values onto the
frontal view. For that purpose, we as-
sume a scaled orthographic camera model.
Each 3D face point A is rotated, scaled,
translated and projected onto the input
image. Once it passes a visibility check,
the corresponding pixel-intensity value is
copied from the input face to the frontal
face. The face frontalization pipeline is
illustrated with an example in Fig. 9.

We now evaluate the performance of
face frontalization for the task of lip read-
ing. The evaluation is twofold. First, we
use a dataset that contains pairs of frontal
and profile videos of speaking participants

for a large number of subjects. The evaluation consists of computing a metric between an image obtained by
face frontalization of a profile view of a speaker, with an image containing a frontally-viewed face of the same
speaker. It is important that the profile and frontal images are recorded with synchronized cameras in order
to capture the same expression. Consequently, the proposed evaluation is based on image-to-image compari-
son. Several metrics were developed in the past for comparing two images, e.g. feature-based and pixel-based
metrics. In this work we use the zero-mean normalized cross correlation (ZNCC) coe�cient between two im-
age regions, a measure that has successfully been used for stereo matching, e.g. [27]. ZNCC is invariant to
di↵erences in brightness and contrast between the two images, due to the normalization with respect to mean
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and standard deviation. Second we use a lip-reading network in conjunction with a dataset that contains short
videos of speakers that utter a single word, together with the ground-truth annotations (word label). We devise
an experimental protocol that measures the e↵ect of face frontalization on the word classification score.

In order to evaluate the performance of the proposed frontalization method and to compare it with state-of-
the-art methods, we used a publicly available dataset, namely the OuluVS2 dataset [28]. This dataset targets
the understanding of speech perception, more precisely, the analysis of non-rigid lip motions that are associated
with speech production. The dataset was recorded in an o�ce with ordinary (artificial and natural) lighting
conditions. The recording setup consists of five synchronized cameras (2 MP, 30 FPS) placed in di↵erent points
of view: 0�, 30�, 45�, 60�, 90�.

Method Principle ZNCC
Hassner et al. [29] 2D-to-3D fitting + symmetry 0.780
Banerjee et al. [17] 2D-to-3D fitting + symmetry 0.739
Zhou et al. [20] 2D-to-3D fitting + GAN 0.801
Yin et al. [30] 2D-to-2D mapping using GAN 0.773
Proposed 3D-to-3D robust fitting 0.841

Table 1: Mean ZNCC coe�cients for 15 participants from the
OuluVS2 dataset. ZNCC lies in the interval [0, 1].

The dataset contains 5 ⇥ 780 videos
recorded with 53 participants. Each par-
ticipant was instructed to read loudly sev-
eral text sequences displayed on a com-
puter monitor placed slightly to the left
and behind the 0� (frontal) camera. The
displayed text consists of digit sequences,
e.g. “one, seven, three, zero, two, nine”,
of phrases, e.g. “thank you”, “have a good
time”, and “you are welcome”, as well as
of sequences from the TIMIT dataset, e.g.
“agricultural products are unevenly dis-
tributed”. While participants were asked

to keep their head still, natural uncontrolled head movements and body position changes were inevitable. As a
consequence the actual head pose varies from one participant to another and there is no exact match between
the head and camera orientations.

Part. Yaw [29] [17] [20] [30] Prop.
#31 19.1 0.905 0.856 0.822 0.875 0.927
#01 23.5 0.915 0.893 0.884 0.921 0.909
#02 24.9 0.888 0.878 0.929 0.881 0.956
#10 29.0 0.805 0.812 0.873 0.792 0.812
#23 30.0 0.810 0.857 0.819 0.817 0.847
#27 32.9 0.685 0.852 0.824 0.772 0.787
#19 37.8 0.752 0.650 0.662 0.677 0.755
#12 38.5 0.731 0.713 0.755 0.683 0.770
#21 40.6 0.632 0.743 0.653 0.673 0.766
Mean 0.791 0.801 0.802 0.787 0.836

Table 2: ZNCC scores for nine participants as a function of es-
timated yaw angle (in degrees) that corresponds to the horizontal
head orientation computed with the proposed 3D head-pose esti-
mator. For each participant, the best scores are in bold and the
second best are in slanted bold.

In practice, we evaluated the per-
formance of the proposed method and
we compared it with four state-of-the-
art methods for which the code is pub-
licly available, [29, 17, 20, 30]. We
applied the frontalization to images ex-
tracted from the videos recorded with the
30� camera (Ip) and compared the re-
sults with the “ground-truth”, namely the
corresponding images extracted from the
videos recorded with the 0� camera (It).
Notice that videos recorded with higher
viewing angles, i.e. 45�, 60� and 90�,
can be hardly exploited by a frontaliza-
tion algorithm because half of the face is
occluded. For each frontalized image If
we extract the mouth region Rf and we
search in the associated ground-truth im-
age It for the best-matching region Rt.
This provides a ZNCC coe�cient for each
query image Ip. Notice that ZNCC only

cares about the horizontal and vertical shifts in the image plane and assumes that the frontalized face and the
corresponding ground-truth frontal face share the same scale. In practice, di↵erent frontalization algorithms
output faces at di↵erent scales. For this reason and for the sake of fairness, prior to applying to estimating the
ZNCC, we extract facial landmarks from both the frontalized and ground-truth faces and we use a subset of
this set of landmarks to estimate the scale factor between the two faces.

We randomly selected 30 video pairs, recorded with the 30� and 0� cameras, respectively, associated with
15 participants from the OuluVS2 dataset. Each video contains 160 images, hence there are 30⇥ 160 = 4800
image pairs in our benchmark. The mean ZNCC coe�cients obtained with two state-of-the-art methods and
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with the proposed method are displayed in Table 1. [29] uses soft symmetry (occluded pixels are replaced with
mirror-symmetric ones).

We noticed that there were important discrepancies in method performance across participants. In order
to better understand this phenomenon, we computed the mean ZNCC coe�cients for nine participants and
displayed these means as a function of the yaw angle, i.e. horizontal head rotation estimated with the proposed
method, Table 2. One may notice that there is a wide range of yaw angles, from 19� to 40�, and that the
performance gracefully decreases as the yaw angle increases. The proposed method yields results that are more
consistent than the other methods, as the yaw angle increases.Examples of face frontalization obtained with
our method are shown on Figure 10 and Figure 11. The ZNCC correlation scores correspond the mouth region,
shown in red.

(a) Faces recorded with the 30� camera

(b) Faces recorded with the 0� camera

(c) Proposed method (self-occluded facial features are
displayed in white)

Figure 10: Frontalization examples for partici-
pant #02 from the OuluVS2 dataset. The ZNCC
scores correspond to the mouth bounding boxes
shown in red.

(a) Faces recorded with the 30� camera

(b) Faces recorded with the 0� camera

(c) Proposed method (self-occluded facial features are
displayed in white)

Figure 11: Frontalization examples for participant
#21 from the OuluVS2 dataset.. The estimated
horizontal head orientation (yaw angle) is of 40�

in this case.

Training
Testing

[29] [20] [30] [31] Prop.

Pre-trained
model [31]

68 60 20 88 81

Fine-tuned
model [31]

83 79 37 94 93

Table 3: The e↵ect of frontalization on the word clas-
sification score (in %) for the 100-IWR task. First row:
word recognition scores obtained with several frontal-
ization methods incorporated in the lip-reading model
of [31]. Second row: word recognition scores obtained
with several frontalization methods incorporated in the
lip-reading model of [31] which was previously fine-
tuned with frontalized faces obtained with the proposed
method.

We also evaluated the ability of our method to im-
prove the performance of lip reading. For this pur-
pose, we used an isolated word recognition (IWR)
task. The LRW (lip reading in the wild) dataset [32]
consists of half a million videos of 500 English words
uttered by 1000 di↵erent speakers. Each video has 29
frames and each target word is surrounded by con-
text words. There are large inter-speaker variations
in head motion. At the best of our knowledge, the
best performing methods for this 500-IWR task are
based on the temporal convolutional network (TCN)
model of [23, 31, 33], with a word classification score
of 88.5. These lip-reading model variants use the
same built-in frontalizer for training and for testing,
namely a 3D-to-3D a�ne transformation that maps
the input face onto a frontal view of a generic face
model. In the experiments described below we use
the implementation of [31], available online.

We experimented with [32] and with [31] in the
following way (please refer to the results reported in
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Table 3). We randomly selected 100 words and associated videos from LRW dataset. We modified the linear
transformation layer of the TCN architecture and the softmax layer to build a 100-IWR classifier. Using the
model trained with [31], we tested the performance of various frontalization methods, namely [29, 20, 30], the
frontalization used in [31] for training, as well as the one proposed in this paper. We also fine-tuned [31],
where we replaced their a�ne frontalization with the proposed expression-preserving frontalization, such as
to synthesize frontal faces for each speaker from arbitrarily-viewed faces. We consider the same subset of 100
words as above. For each word category we used 150 videos for training, 20 videos for validation and 20 videos
for testing. The fine tuning uses the Adam optimizer and a cosine scheduler for the learning rate. This fine-
tuned model was then used to test the frontalization methods mentioned above. The results in Table 3 show
that the fine-tuned model using the proposed face frontalization increases the state-of-the-art performance, e.g.
from 88% to 94%.

We proposed a face frontalization method that preserves non-rigid facial deformations. This stays in
contrast with several state-of-the-art frontalization methods that are designed to boost the performance of face
recognition by predicting as-neutral-as-possible frontal faces. We conducted a series of experiments in order to
analyze the e↵ect of frontalization on the task of visual speech recognition, whose success heavily relies on the
analysis of non-rigid mouth motions, i.e. lip reading. For this purpose, we used two datasets.

The first dataset, OuluVS2, consists of multiple-view videos of speakers collected in a controlled laboratory
environment. We designed an evaluation pipeline that consists of measuring the zero-mean normalized cross-
correlation (ZNCC) score between a frontalized face and a frontal view of the same face. To this end, the
mouth regions of the two images to be compared are aligned such that ZNCC is maximized. We compared
our method with four state-of-the-art methods that use various geometric and DNN models. This benchmark
reveals that the proposed method better preserves the shape of the mouth by a significant margin.

The second dataset, LRW, consists of videos collected from TV programs, that contain persons uttering
speech from a catalog of 500 English words. Unlike the OuluVS2 participants, who are instructed to keep their
heads still, the LRW dataset contains in the wild recordings: the speakers have large and unexpected head
motions. We plugged our frontalization model into a DNN-based lip reading framework and we thoroughly
analyzed its e↵ect on the word classification scores. In the light of these experiments, we concluded that
these scores are improved significantly. For example, augmenting the LRW training set with frontalized videos
predicted by our method, and fine-tuning the lip-reading network with these videos, increases the classification
scores of all tested methods, Table 3.

In the future, we plan to add a temporal model to our frontalization pipeline and to extend its use to
other tasks such as emotion recognition, visual speech reconstruction and audio-visual speech enhancement.
We believe that visually-augmented speech technologies could be extremely useful in noisy and reverberant
acoustic environments.

4.2 Multi-modal Expression Recognition

In a hospital environment, every patient continuosly goes under medical care and her/his emotional state can
vary a lot during the day. Therefore, it is necessary to correctly understand the patient’s emotional state,
such that robots can infer and interpret human emotions in a more e↵ective way when interacting with people.
The objective of task T4.3 (Multi-modal A↵ect & Robot Acceptance Analysis) is to develop technologies for
analyzing the a↵ective state of the user(s) interacting with the robot, and specifically the level of acceptance
of the robot. In particular, a state-of-the-art algorithm for emotion recognition from the extracted sources
needs to be implemented to meet the requirements of the target scenario. The emotional state of the user, in
combination with other features (e.g., user distance from the robot, gender/age of the user, etc.), will then be
used to develop and implement an approach for automatically predicting in real-time the level of acceptance
of the robot for the target user.

In this section we describe our ongoing research on emotion recognition, where the objective is to infer the
human emotional state. We follow a categorical model, in which emotions consist of discrete entities associated
with labels. In particular, we consider 7 basic expressions, namely “happy”, “sad”, “anger”, “surprise”,
“disgust”, “fear”, and “neutral” (see Figure 12). Other models – which are not explored here – are also
possible, such as dimensional models, in which emotions are defined by continuous values of their describing
features, usually represented on axes (see the recent survey [34] for more details). Considering that humans do
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not show their emotions only through visual or audio modalities, we decided to follow a multi-modal approach.
Specifically, the features considered are:

• audio

• video

• text

• facial landmarks.

Hence, the task here is to recognize 7 basic expressions from a multi-modal input.

Figure 12: Left: categorical model for emotion description. Right: images showing examples of emotions.

Emotion recognition is a challenging task, in particular when performed in actual hospital environment,
where the scenario may di↵er from the controlled environment in which most experiments are usually performed
(e.g., a laboratory with stable illumination conditions). Currently, due to the lack of data that is specific to
the SPRING scenario, we are evaluating our method on two publicly available data sets. The first one is
RAVDESS [35], which consists of 1444 video clips acted by 24 professional actors (12 female and 12 male),
where each sequence is annotated with a categorical emotion and the actors are repeating the sentence “Kids

are talking by the door” and “Dogs are sitting by the door”, simulating the di↵erent emotions. The second one
is CMU-MOSEI [36], which is the largest in the wild dataset (see Figure 13 for some examples). CMU-MOSEI
contains more than 23,500 sentence utterance videos from more than 1000 online YouTube speakers. Each
sequence is annotated with the intensity for each emotion, therefore it is possible that multiple emotions are
present at the same time.

Current methods in multi-modal emotion recognition try to explore the relations between features from
di↵erent modalities using di↵erent approaches. For example, in [37] an attention mechanism between modalities
is used to further explore correlations, whereas the [37] exploits the modality relation by combining them
together in multiple ways and then fusing them together again. Another approach that is worth mentioning is
by Ghaleb et al. [38], where a specific MSE loss between the modalities embedding is used to better align the
extracted features.

Inspired by the recent success in image classification made by [39] and [40], we decided to address the
emotion recognition problem using a decoder-encoder architecture. Hence, as shown in Figure 14, each modality
is processed independently trough a separate backbone:

• the video frames are processed with an R(2+1)D [41] pretrained on Kinetics 400 [42];

• the audio signal is processed to extract the mel-spectogram and then processed using a TasNet [43];

• the text is pre-processed to extract the GloVe embeddings [44] and the sequence is then analyzed trough
a Transformer [45];
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Figure 13: Samples images from the CMU-MOSEI dataset [36].

• for the facial landmarks, the sequence is processed with a Spatio-Temporal Graph Neural Network [46].

Then, to e↵ectively combine the features, each modality is projected using an MLP and contrasted with the
other modalities using the unsupervised contrastive loss:

L = �
X

i2I

log
exp(zi · zj(i)/⌧)P

a2A(i) exp(zi · za/⌧)
(11)

where z denotes the embedding of the projection layers, · is the inner dot product, ⌧ is the temperature (scalar),
A(i) represents all the positive and negative embeddings, I is the set of the augmented samples and j(i) is the
index of the of the other samples and modalities that are generated from the same source.

The idea behind our approach is to push together the embeddings of the same emotion while pushing away
the other emotions, and at the same time obtain an inter-modality feature alignment thanks to the contrastive
loss performed between di↵erent modalities. As done in [46], the loss is performed over the modality projection
layers, whereas the features extracted for the emotion recognition come from previous layers: this allows the
network to produce features that are still aligned between modalities but are more significant from a feature
information perspective. Consequentially, the features extracted are concatenated and processed through a
prediction layer that outputs the emotion probabilities. The last layer is trained either with a Cross Entropy

Loss (for RAVDESS [35]) or a BCE Loss (for CMU-MOSEI [36]).

In order to evaluate on CMU-MOSEI, we report both the weighted accuracy (WAcc) and the weighted
F1-score for each separate emotion, as proposed in [47]. The weighted accuracy is defined as follows:

WAcc =
TP ⇤N/P + TN

2N
(12)

where TP (resp. TN) denotes the true positive (resp. true negative) predictions, and P (resp.N) denotes the
total number of positive (resp. negative) examples. In order to evaluate on RAVDESS, we only report the
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Figure 14: Proposed architecture for expression Recognition.

overall accuracy as done in [38],[48]. Considering that such a dataset has no standard splits for training and
testing, we split the dataset in two ways: the first leaves out some actors for the training set, while the other
performs a non actor dependent split between training and evaluation, where both splits are done using 90%
for training and 10% for testing as in [48].

Happy Sad Anger Surprise Disgust Fear
WAcc F1 WAcc F1 WAcc F1 WAcc F1 WAcc F1 WAcc F1

Graph-MFN[36] 66,3 66,3 60,4 66,9 62,6 72,8 53,7 85,5 69,1 76,6 62 89,9
LF+MHA 61,27 61,61 55,797 36,09 54,92 37,06 50,34 5,66 55,84 44,15 57,25 43,71
MESM [37] 64,1 - 63,00 - 66,8 - 65,70 - 75,6 - 65,8 -
ours 68,43 68,81 62,3 55,84 66,17 69,93 60,64 67,79 71,76 73,27 63,51 75,33

Table 4: Performance of several methods on CMU-MOSEI [36].

Table 4 shows the performance of several methods on CMU-MOSEI. We consider the following baselines:
Graph-MFN [36], which uses a Dynamic Fusion Graph (DFG) to fuse the di↵erent modalities studying also
the cross-modal interactions; MESM [37], which uses sparse CNN and cross attention modules to predict the
emotions; and LF+MHA which is a late fusion approach with a multi-head attention module over the fused
features. In Table 5 performances on RAVDESS are reported. Concerning our method, we do not consider text
features (since actors are repeating the same sentence), but audio and landmarks only. We plan to investigate
the usage of video features as well in the future. Here we consider the method by Ghaleb et al. [38], which uses
a separate network for processing audio and video, and then regularizes the two modalities with a temporal
loss that acts over the sequence. Another method that we report is Lr-Grin [48] which usse a Spatio-Temporal
Graph Network that is capable of learning the optimal adjacency matrix to better exploit the data. Moreover,
we report some experiments that we have conducted using an i3d [49] on facial images and also performance
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Figure 15: Examples of emotions predicted on RAVDESS

Actor split Video Audio Graph Acc (%)
Ghaleb et al [38] X X X 67.7
i3d [49] X X 60.8
TCN [43] X X 58,5
ours X X X 75.1
Lr-Grin [48] X 85.65
STGCN [46] X 76.35
TCN [43] X 75,9
ours X X 87,15

Table 5: Performance of several methods on RAVDESS [35].

evaluation of models that use only the audio (TCN) [43] or graph (STGCN) [46] as input. Some anecdotal
example of RAVDESS can be seen in Figure 15.

From Tables 4 and 5 we notice that our model is capable of performing on a par with the state of the art.
In particular, on RAVDESS there is a solid performance improvement. On the other hand, in more challenging
scenarios like CMU-MOSEI, our method is better than the baselines in some situations but improvement is
not as evident as in RAVDESS.

Our preliminary experiments showed that the proposed approach is promising on standard datasets, es-
pecially considering we are working in an unsupervised setting. Future work will continue to explore the
advantages of our unsupervised contrastive fusion method. In particular, we believe that an important aspect
of our method is that it allows each modality to be deeply exploited without being influenced by other modal-
ities. Therefore, our model is expected to be more robust to the problem of non relevant modalities in a real
world scenario, and to be capable of obtaining good performance with less input modalities.

5 Conclusion

In this document we described the current status of the “describing humans” task (T4.1). In particular,
we implemented face detection module, mask detection module, face verification & facial biometric (age and
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gender) estimation module, and human pose estimation module. For face detection, we rely on MTCNN [1]
library given its good performance and fast speed, as it can detect faces in videos in real time. Besides, we
have also included a face mask detection module derived from SSD [2] model, but with a lighter backbone.
This task has recently gained great relevance due to the Covid-19 pandemic, which demands people to wear
face masks as a protection measure. For the face verification module, we used knowledge distillation technique
to learn a light student network from the teacher network (i.e., FaceNet [7]). Based on the learned student
network, we also added two extra classifiers for age and gender estimation. Therefore, face verification, age
and gender estimation are implemented using one single network. For human pose estimation, we rely on [13]
which uses a nonparametric representation referred to as Part A�nity Fields (PAFs) which has a good balance
between inference time and the accuracy. To sum up, we provided a first version of several functional modules
which have been integrated with ROS. We plan to further elaborate these modules during next months, with
the aim of improving their performance.

Due to delays in data collection and ARI robot delivery, we have not started yet to test our algorithms on
real-time platforms in relevant environments. Instead, we tested the proposed methods on publicly available
datasets only. In the future we will conduct experiments on the robotic platform in scenarios which are relevant
for this project. In this context, we plan to use domain adaptation techniques in order to exploit both synthetic
data from T2.2 and publicly available datasets, thus avoiding the need of annotating novel data. The use of
audio signals as well as the information derived from the 3D semantic maps of WP2 will be investigated in
order to improve the recognition accuracy of human pose estimates and of soft-biometric patterns. Besides,
even though we have integrated the algorithm into ROS, we can not run it now as our dependent modules
from our partner, such as the tracking module from Section 3.2, is not ready yet.

In order to compensate for delays in the experiments, we started working in advance on task T4.3, which
is supposed to start on M22. In particular, we presented in this document our ongoing research on emo-
tion recognition via contrastive learning. In the meanwhile, we are also communicating with other partners
and planning to integrate di↵erent modules together, such as the face frontalization module from INRIA. In
particular, we will investigate whether face frontalization could help, e.g., age&gender estimation or emotion
recognition. We will also integrate our modules with the tracking module from WP3.
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