
 

 
 
DELIVERABLE D6.1 

 
 

GRANT AGREEMENT N. 871245 

 
Deliverable D2.3     

Audio-Visual Data Simulator 

 
Due Date: 31/01/2022 

Main Author: INRIA 

Contributors: BIU, CVUT 

Dissemination: Public Deliverable / Confidential Deliverable 

 

 

This project has received funding 

from the European Union's Horizon 

2020 Research and Innovation 

Programme under Grant Agreement 

No. 871245. 

 



 

D2.3 Audio-visual data simulator VFinal |                                                          |Page 2 
 

This project has received funding from the European 

Union's Horizon 2020 Research and Innovation 

Programme under Grant Agreement No. 871245. 

DOCUMENT FACTSHEET 

Deliverable no. D2.3: Audio-visual data simulator 

Responsible Partner INRIA 

Work Package WP2: Environment Mapping, Self-localisation and Simulation 

Task T2.2: Audio-Visual Data Simulator 

Version & Date VFinal, 31/01/2022 

Dissemination level [ X ] PU (public)  [  ] CO (confidential)  

 

 

CONTRIBUTORS AND HISTORY 

Version Editor Date Change Log 

V1 INRIA, BIU 17/01/2022 First Draft 

V2 CVUT 19/01/2022 Vision simulator update and review 

V3 CVUT 27/01/2022 Illustrations and references added 

VFinal INRIA 31/01/2022 Adapted structure 

 

APPROVALS 

Authors/editors INRIA, BIU, CVUT, ERM 

Task Leader LEADER 

WP Leader CVUT 

 

  



 

D2.3 Audio-visual data simulator VFinal |                                                          |Page 3 
 

This project has received funding from the European 

Union's Horizon 2020 Research and Innovation 

Programme under Grant Agreement No. 871245. 

 TABLE OF CONTENTS 

 

Executive Summary 4 

Audio-Visual binaural Simulator 5 

Beyond Binaural Neural Simulation 7 

Simulators for 3D Mapping, Localization and Object detection training 8 

References 9 

 

  



 

D2.3 Audio-visual data simulator VFinal |                                                          |Page 4 
 

This project has received funding from the European 

Union's Horizon 2020 Research and Innovation 

Programme under Grant Agreement No. 871245. 

 EXECUTIVE SUMMARY  
 

EXECUTIVE SUMMARY 
This deliverable aims to report the progress on the audio-visual data simulator. There are 

three main challenges when simulating AV data within the SPRING project: 

1. To generate realistic data that can be used to train, e.g., the audio-visual tracker; 

2. To generate data that corresponds to the AV sensing capabilities of ARI, especially 

regarding audio. 

3. To be able to generate large amounts of data. 

Since the microphone array of ARI is positioned and oriented so that the recorded audio 

does not correspond to any available large-scale datasets, we emphasize generating 

realistic audio data than generating video data. 

We organized this into two different modules so that they could be independently replaced 

in the future or be adapted in other projects or to other robotic platforms. 

First, we developed an AV data generator based on the images and annotations of a publicly 

available dataset.  With clean speech signal input, it generates the binaural signals at a 

sensor’s position/orientation. 

Secondly, we developed an audio generator that, given a clean speech signal, it can provide 

sound signals that correspond to ARI’s microphones. 

Finally, we implemented simulations of visual input, 3D mapping using AI Habitat, and 

training data generation in MyGym. 

The software is available at: https://gitlab.inria.fr/spring/wp2_mapping_localization/av-

sim.  

https://gitlab.inria.fr/spring/wp2_mapping_localization/av-sim
https://gitlab.inria.fr/spring/wp2_mapping_localization/av-sim
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 AV BINAURAL SIMULATOR 
 

AUDIO-VISUAL BINAURAL SIMULATOR 
 

Given a video sequence and 3D annotations of the speakers, the audio-visual binaural 
simulator (AV simulator) provides simulated binaural audio sequences, which correspond to 
the trajectories of the speakers in space and time. 
 
To give an example, our AV simulator simulates binaural audio sequences for the 360-degree 
stitched images (see Illustration 1) in the JackRabbot dataset [1] captured by a robot in an 
indoor scenario. For the visual part, the JackRabbot dataset provides 3D positions (x, y, z) 
and orientations of the people in the video. The projected 2D positions (i.e., bounding boxes 
with the upper left corner (x, y), box width w, and height h) are also given. Importantly, it 
provides identity labels of the speakers, which allows us to provide a unique audio identity 
for each speaker.  
 
For the audio part, since the JackRabbot dataset does not contain audio recordings, the AV 
simulator explores clean speeches from the TIMIT dataset [2]. The TIMIT dataset provides 
clean (i.e., no background noise) narrations from more than 400 narrators. Concretely, the AV 
simulator first generates mono-channel audio sequences by synchronizing the audio and 
video sequences using audio samples from the TIMIT dataset and 3D labels from the 
JackRabbot dataset. Then, the AV simulator explores the deep learning-based binaural audio 
generation networks from [3] to provide binaural audio outputs. The listener is considered in 
the center of the 3D space of the video sequence, and the outputs create a spatial and 
temporal correspondence between the locations (relative to the listener) of the (moving or 
immobile) speakers and the generated synchronized mono audio. The binaural audio 
generation networks are pre-trained by [3], and the weights are frozen during our binaural 
audio generation. It inputs the positions of speakers and their generated mono audio 
sequences from our AV simulator and outputs the corresponding binaural audio sequences. 
 
Overall, the AV simulation can be summarized into two steps: i) AV simulator first collects 3D 
positions and orientations from a given dataset and generates synchronized mono audio (as 
described in Algorithm 1). ii) Given the speakers’ positions, orientations, and synchronized 
audio as inputs, the AV simulator in the second step leverages the binaural audio neural 
generator from [3] to output the final binaural audio. 
 

 

 

Illustration  SEQ Illustration \* ARABIC 1: Stiched image of the JackRabbot dataset 

[1]. 
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 BEYOND BINAURAL SIMULATION 
 

BEYOND BINAURAL NEURAL SIMULATION 
As an alternative to the DNN-based binaural rendering, we also provide a “physical” acoustic 
simulator. This simulator is based on the image method [4,5]. An efficient C++ 
implementation with a Matlab wrapper is available.1 
 
When a sound source propagates in an echoic enclosure, it is reflected from the room facets 
(walls, floor, and ceiling) and objects within the environment. For each reflection, the sound 
is partially absorbed (the level of the energy loss depends on the material of the 
corresponding room facet).   
  
The image method [4,5] is an efficient method for calculating room impulse responses. The 
reflections of the sound on the room facets are realised by multiple images of the source 
beyond the room facets (similarly to multiple reflecting mirrors).  
 
The properties of the obtained room impulse response (RIR) are widely analysed in the 
literature. A detailed description is beyond the scope of this summary. The interested reader 
is referred to [6,7,8,9]. Typically, this RIR comprises the direct-arrival, sparse reflections 
corresponding to the early arrivals and a dense tail of reflections, with exponentially decaying 
amplitude, corresponding to the reverberation time of the room (referred to as late arrivals).    
 
There are two main drawbacks of this approach. First, it fits only “shoebox” rooms with a 
rectangular shape. Moreover, no objects can be added to the room (namely, no furniture, etc.). 
The second problem is the microphone installation. The image method and the respective 
implementation assume that the microphones are mounted in free space, i.e., no reflections 
from the mounting device are considered. In our case, the microphones are mounted inside 
ARI (below the chest).  
 
It is well known from the binaural rendering literature2 [10] that the sound wave interacts with 
the so-called head-related transfer function (HRTF) of the hearing aid wearer. In our case, the 
device-related transfer function (DRTF) should be considered instead.  
 
We have therefore decided to incorporate the DRTF into the image method.  For that, we have 
calculated for each relevant reflection its angle-of-arrival and superimposed the 
corresponding DRTF picked from a pre-recorded database. To reduce computational 
complexity, we implemented the procedure up to a user-defined reflection order, typically set 
to 2, i.e., the direct-arrival plus six first-order reflections plus 36 second-order reflections. 
Further reflections can be either implemented as in the regular image method (with amplitude 
matching procedure to the early reflections) or even more efficiently, as an exponentially 
decaying Gaussian process, according to the RIR statistical models. In the latter case, we 
should also consider the spatial coherence of the late reverberation tail [12]. 
 
The sources’ positions will be set in accordance with the visual information.  ARI will be 
positioned in the centre of the 3D space of the video sequence. 

                                                      
1 https://github.com/ehabets/RIR-Generator 

2 https://www.ece.ucdavis.edu/cipic/spatial-sound/hrtf-data/  

https://github.com/ehabets/RIR-Generator
https://www.ece.ucdavis.edu/cipic/spatial-sound/hrtf-data/
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The simulator was initially tested with a newly published multi-microphone behind-the-ear 
HRTFs [11]. We are now designing a recording campaign to establish a database of ARI’s 
DRTF. This will only be measured in multiple azimuth angles and a fixed elevation angle. The 
measurements should be carried out in an anechoic chamber. This is unavailable at BIU, so 
we will use BIU’s var-echoic chamber at the lowest applicable reverberation level (about 100 
ms).    
 
The efficacy of the simulator will be verified in the task of generating large datasets of the 
speech signals (in multiple reverberation levels) that can be used to train the algorithms 
developed in the course of the SPRING project. It will also be compared with a DNN-based 
binaural rendering algorithm (note that ARI comprises four microphones). The algorithms will 
be evaluated with real data collected with ARI in the various labs and the Broca hospital.     
 

SIMULATORS FOR 3D MAPPING, LOCALIZATION AND OBJECT 

DETECTION TRAINING 
 

  
AI Habitat model of Broca Hospital MyGym Simulation environment 

 

We implemented a simulation of robot movement in a photorealistic environment in the AI 

Habitat platform [13], which includes Habitat Sim and Habitat Lab.   

 

AI Habitat Sim is a high-performance 3D simulator with configurable agents, multiple 

sensors, and generic 3D data manipulation. It offers extremely fast rendering, achieving 

10000 fps on a single GPU. 

 

AI Habitat Lab is a modular high-level Python library for developing AI in such tasks as robot 

navigation, instruction following, and question answering. After training and evaluating the 

agent in the simulation, we can transfer the acquired knowledge and skills to the real robot 

[15]. 

 

3D models for the AI Habitat environment can be generated using 3D reconstruction and 

scanning. We use 3D Matterport [matterport.com/] technology, which provides good quality 

models at a reasonable cost.  

 

To train state of the art object detection and segmentation pipeline YOLACT 

[github.com/dbolya/yolact] using data augmentation, we have implemented data generation 

in myGym [14] framework. It is a modular framework for developing and benchmarking RL 

https://matterport.com/
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algorithms.  myGym contains a module allowing to work with tasks that incorporate visual 

recognition. It provides an option to generate synthetic datasets for integrated computer 

vision models such as YOLACT. 
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