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1 Introduction

The research project H2020 SPRING has a wide scope of objectives in differ-
ent research fields. This deliverable presents progress made mainly towards two
specific objectives SpO-1.1: Performing self-localisation and tracking in clut-
tered and populated spaces, and SpO-1.3: Augmenting the 3D geometric maps
with semantic information learned from associations between images (colour and
depth) and natural language queries. These specific objectives are part of the
first of three strategic objectives. The strategic objective (StO-1) aims to
enable robust robot perception in complex, unstructured and pop-
ulated environments. We have presented our advances towards these ob-
jectives in our previous deliverable D2.1 Visual-based localisation in Realistic
Environments [1]. The presented work provided state-of-the-Art results in task
of self-localisation within a realistic environment. The presented work builds on
InLoc [2] and produces very accurate localisation in stable visual conditions. In
other words it is highly reliant overall visual similarity between localisation map
and query images. In order to improve the robustness we present an improve-
ment based on taking into account semantic information of the scene as a final
re-ranking step between candidate results. The advantage of adding semantic
information is twofold. Firstly we believe it improves robustness to viewpoint,
seasonal changes or general lighting conditions. Secondly it enriches localisation
map with semantic information that can be further used in the human-robot
interaction (HRI).

2 Semantics Extraction

To extend the visual localisation algorithm into semantic localisation, we need
to introduce the semantic information on both the query side and the map
(database) side. The former is done via a standard State-of-the-Art semantic
segmentation tool like Detectron2 [3] or YOLACT [4] and is discussed in the
while the latter requires semantic segmentation of 3D data which is a far more
challenging task. There are some pioneering works like [5], [6] but most of
the effort is currently driven by research in the field of autonomous driving,
hence the focus is aimed towards traffic-specific sensors like LiDARs [7]. The
LiDAR produces quite sparse pointclouds, especially in comparison to our high
accuracy model. We could not achieve a reasonable quality of annotation using
automated techniques and thus we annotated the 3D model manually. Manual
processing carries two benefits, first it provides reliable ground-truth labels of
the objects which can be potentially useful as benchmark or training data for
future automation, and secondly, it allowed us to closely inspect the model and
helped us understand what kind of objects can be encountered in a specific
environment like hospital. Figure 1 shows some of the objects encountered in
the model.
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Figure 1: Examples of objects found within the Broca model.
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Figure 2: Examples of ground truth semantic annotation appended to Broca
model. Yellow - Chairs, Red - Tables and Desks, Green - Plants
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2.1 3D Semantic Segmentation of Broca Hospital

Contrary to our initial assumption, we discovered that the 3D model of the
hospital is semantically very similar to a general office building with plenty of
standard furniture like chairs and office desks and only a handful of specialized
medical equipment like a wheelchair, medical bed or other specialized medical
measurement or monitoring devices. This can be seen on Figures 1 and 2. We
also observed that the medical equipment is mostly present in the check-up
rooms where the actual patient examination is usually conducted. Even though
the hospital model is very accurate and contains a lot of details, it is still a mesh
model and it also contains some artifacts and it may happen that neighbouring
objects are blended into a single object. We observed this behaviour especially
around office desks, which were often inseparable from office chairs or smaller
objects on the desk. A mesh model consists of triangular surfaces and this
representation makes the separation extremely difficult. Therefore, we decided
to leave the office desk as a single object with all items on it and around it. Full
list of objects is available as a part of the semantic labeling package and the
link can be found in the Software and data Chapter.

2.2 Image Semantic Segmentation using YOLACT

For the subtask of Image semantic segmentation, we use YOLACT [4]. Core
advantage of YOLACT compared to other segmentation tools is its speed. The
authors claim that it can run at a frequency around 30 to 40 frames per second,
which is usable for real-time applications. We used an of-the-shelf ResNet50
[8] architecture model, pretrained on Microsoft’s COCO dataset [9]. Figure
3 show some segmentation results on the Broca dataset images. As can be
seen, YOLACT is able to detect most of the common objects relatively reliably.
However, when YOLACT encounters an object which is not part of COCO
dataset, we get completely false results. An example of such behaviour can be
seen on Figure 4 where a wheelchair is detected as a bicycle.

8



Figure 3: YOLACT semantic segmentation results of the Broca dataset cutouts.
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Figure 4: Visual example of YOLACT results observing an unknown class. The
image contains almost a canonical view over multiple wheelchairs which are
falsely classified as Bicycles.
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3 Self-Localisation from Images

The Self-localisation from image data is still an open research problem. Even
though we can achieve satisfactory results in a still environment as we published
in our previous deliverable D2.1 purely on visual data, we can expect that the
localisation precision will drop as more obstacles, occlusions will be introduced.
Therefore, we work on improvements of the visual-based localisation with the
main goal to robustify the localisation process rather than improve in the still
environment.

3.1 Visual-Based Localisation

To provide a better understanding of the proposed modifications to the localisa-
tion algorithm, we briefly recap the visual-based localisation algorithm proposed
in D2.1 [1]. The localisation algorithm can be divided into multiple consecutive
steps. The process starts with Image retrieval where only a small subset of the
most relevant database images is selected and further processed. This is followed
by the extraction of feature points from the images and establishing matches
between the feature points of the query image and the feature points of the
database images. These feature matches are then pruned by geometric verifi-
cation where we select only those in line with a geometrical transformation (We
test for two hommographies). The selected tentative matches are then used to
estimate the relative pose of the query image with respect to the database
image. Given the known position of the database image within the localisation
map, we reconstruct a candidate pose with respect to the localisation map. Fi-
nal step is pose verification by comparing the visual similarity between the
query image and rendering of the localisation map model from the candidate
pose, we select the pose which can reproduce the query image best. Figure 5
shows the overview of the localisation process.
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Figure 5: An overview of localisation pipeline according to InLoc [2]
.
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3.2 Semantic-Based Localisation

Our initial goal was to follow the work of J. Schönberger et al. from 2018 -
Semantic visual localization [10]. It relies on the availability of precise depth
information for query images and comparison of semantic information in 3D
space. The precision is key because the relative pose is estimated based on
finding the best alignment between the semantically annotated depth of the
query image and the localisation map. However, ARI robot does not provide
depth information for cameras other than those used for collision avoidance,
which have very limited scope of vision, mainly observing the floor in front of
the robot. Even though there are some works on depth estimation from a single
image, for example, the work by C. Godard et al.: Unsupervised monocular
depth estimation with left-right consistency [11], the results are not comparable
with real depth sensorical data. Therefore, this approach is not suitable for
the SPRING project. We decided to modify our existing localisation pipeline
by extending it by one more step where we compare the semantic similarity
between the query and candidate pose render.

Figure 6: An overview of localisation pipeline according to InLoc [2]
extended by semantic information.
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4 Software and data

The results of described work consist of software tools and developed modules
and processed data. Both are publicly available on the CVUT - SPRING repos-
itory which is physically stored on the servers of Czech Technical University.
We have full control over the data storage and its accessibility and therefore we
can guarantee four years of continuous support after the project is terminated
as required by European Commission. The repository can be accessed at the
web address:

https://data.ciirc.cvut.cz/public/projects/2020SPRING/SPRING_D22_

Semantic_Based_Localisation/ The repository is formed as a standard folder
tree structure with two main folders in the top level:

./segmentation_data

and

./software_modules

4.1 Segementation data

The segmented data are available in multiple formats suitable for various visu-
alization frameworks.

The list of annotated objects is available in PDF file at: ./broca_model_

annotated/CLASSES.pdf

The ./broca_model_annotated/README.txt file contains additional infor-
mation about the organisational structure of the segmentation data.

4.2 Software modules

We publish an improved version of the Visitor Module from D2.1 [1] which a
simple agent walking within the 3D model of the hospital. It is built on top
of AI Habitat framework developed by Facebook Research [12]. This version is
enhanced with the semantic information of the newly labeled data. The module
is available at ./visitor_module_with_semantics/ An example output from
the visitor module can be seen in Figure 7.
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Figure 7: Visitor module in the Living lab model: Top row - a stereo pair of
cameras, Bottom left - semantic segmentation of the scene (Green - chairs,
Blue - tables, Brown - background), Bottom right - depth information of
the scene

5 Conclusion

We have made a great progress in the introduction of semantic information into
the localisation map. We have manually annotated the Broca hospital with
semantic labels and thus prepared a source of reliable training data for adapt-
ing current segmentation models to the hospital environment. We proposed a
modification to the current localisation algorithm by adding a final layer which
compares the semantic similarity between the map and query image.

6 Future work

We see semantic localisation as a promising tool to enhance the quality of locali-
sation in challenging scenarios with strong occlusions or less reliable localisation
map.

Understanding the semantic context of the image will be important not only
to improve the localisation quality, but also to identify parts of the image that
we need to mask out and avoid using for localisation, as it is likely to provide
no or even misleading information about the location of the robot. This in
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particular is relevant for humans, smaller movable objects like their belongings
and furniture like chairs which often move and it is impossible to capture such
information within the localisation map.

We also have to retrain the YOLACT to better adapt to the hospital envi-
ronment with a particular focus on the medical equipment.
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