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1 Introduction

One of the strategic objectives (StO-1) of H2020 SPRING is to enable ro-
bust robot perception in complex, unstructured and populated environments.
A necessary component of it is a specific objective (SpO-1.1) which aims to
perform self-localisation and tracking in cluttered and populated spaces. Given
a 3D map of the environment, e.g. a hospital or a museum, visual localisation
will rely on image-based place recognition and will be integrated into the robot
navigation planners that are already available.

The work package two (WP2): Environment Mapping, Self-localisation and
Simulation led by CVUT aims to provide solutions to this objective (among
others). Specifically the task T2.1 named Robot Self-localisation from Images
is tailored to focus on the self-localisation which is the first and necessary step
to accomplish the objective. In this task we develop visual localisation based
on viewpoint visual similarity. This will be achieved by retrieval of candidate
camera positions, followed by camera pose estimation via geometric matching
and careful camera pose verification using camera pose computation in 3D or
similar weaker geometrical verification techniques.

The outcome of T2.1 is split into two parts (D2.1 — Visual-based local-
isation in realistic environments and D2.4 — Visual-based localisation
in relevant environments.). The aim of D2.1 is to put together the general
self-localisation module with off-the-shelf components which will be further en-
hanced and the final version will be presented in the form of D2.4. This work
presents the first part, the deliverable D2.1.

Our work builds on well known work of H. Taira et al. InLoc: Indoor Visual
Localization with Dense Matching and View Synthesis[1]. We build localisation
map from data gathered in Broca hospital where will take place the experimental
evaluation of the project. Part of the data is used to evaluate precision of
localisation.

2 Visual Self-Localisation

The task of visual self-localisation (localisation for further reference) can be
defined as following task: Given a photograph, find the precise position where it
was taken. We assume that we have access to a visual map of the environment
where the image was captured and the result is a six degree-of-freedom pose
(rotation and translation vector) with respect to the map. We aim for a robust
system which can be applied even in environments which experience minor to
moderate changes on a daily basis and are not reflected in the map, and thus
the map cannot be fully relied upon. Second desired property is the ability
to handle multiple distinct environments of arbitrary size at once. In case of
SPRING this would include all places where we want to deploy our robot.



2.1 InLoc: Indoor Visual Localisation with Dense Match-
ing and View Synthesis

We follow the approach proposed by Taira et al. in InLoc[l]. The visual map
is constructed as a database of images with known poses and depth informa-
tion. The database is accompanied by a mesh model of the environment. The
localisation can be divided into four main steps:

1. In order to localize a query image in this map, we first search the database
for images looking at the same scene, this is the Image retrieval step.

2. The second step is to extract and verify matching feature points between
a retrieved image and the query. We select only those tentative matching
feature points which are supported by a rigid geometrical transformation.
Geometrically verified points are more likely to be true matches and
can be used for pose estimation. After this step we re-rank the retrieved
images and continue with only a few best.

3. The third step is to take the retrieved images from the second step and
solve relative the pose estimation problem based on matched and verified
features. The outcome of this step is a candidate camera pose per retrieved
image.

4. The final step is a pose verification step where we project the mesh
model into the candidate camera pose forming a synthetic image. The
synthetic image is then compared via similarity measure to the original
query image. Candidates are re-ranked accordingly and the pose with the
highest score is deemed as the final pose estimate.

2.2 Image Retrieval

In order to efficiently retrieve related images, we follow the netVLAD idea of
Arandjelovic et al. [2]. A modified VGG16 network][3], is used to estimate image
embedding that is then comapred to retrieve most similar image.

The original VGG16 network is a deep convolutional neural network with
approx 138 million parameters. The network is composed of convolution layers
followed by ReLLU units[4] and max-pooling layer as every fourth layer. The final
two layers are fully connected and were originally used for image classification.

We use a pre-trained VGG16 network on Pittsburgh30K dataset[5] and the
last two layers are removed and replaced with the netVLAD layer. This layer
takes (in our case) 4096 dimensional image embedding which is further com-
pared to 8 pretrained centroids and residuals are computed. The residuals are
then L2 normalised and concatenated into a single 32768 dimensional vector —
netVLAD vector. This vector is then computed for every database image and
and stored.



To evaluate a query, we first compute the netVLAD vector of the query. The
similarity of two images is then computed as a dot product of their embeddings.
By comparing the query to all database images we get the list of candidate
images for the second step. We use the comparison results to rank the database
images and top hundred candidates are used in next steps. See Figure 1 for an
example of results.



Figure 1: Image retrieval step results for 10 randomly sampled queries. Leftmost
image is the query image followed by the top five retrieved images, sorted from
left to right. Ids = [158,137,275,284,67,174, 360,229, 250, 265|

2.3 Geometrical Verification

At this stage we have a ranked list of images observing the same scene. First
step of pose estimation is to find matching feature points in the query and a
database image. Dense feature points are extracted from results of intermediate



layers of VGG16 used for netVLAD computation. The features are retrieved
at the coarser layer and pruned by the finer layer using third and fifth lay-
ers respectively. Such tentatively matched feature points are visually similar.
We compute homographies between feature points and image plane using well
known random sample consensus method (RANSAC)[6] and select two with
largest support.

RANSAC, in general, is a model fitting method. The algorithm iteratively takes
random samples of data, estimates model parameters based on the sample and
evaluates model support by number of data (inliers) within a specified error
range. The model with highest support is then selected.

The supporting feature points are then considered as weak inliers — verified,
yvet tentative matches for further steps. We re-rank the candidate reference
images by amount of these inliers and select only ten best for next steps. See
Figure 2 for closer inspection of feature points.



Figure 2: Dense feature verification with query on left and database image on
right. Dense feature points (blue) and their tentative matching (red) are ver-
ified using up to two homographies. Supporting feature matches are displayed
in green. Upper pairs shows matching of database image with highest ranking
after image retrieval for query id 275. Below is the highest ranked database im-
age after the geometrical verification step re-ranking. The feature matching
is performed on RGB images, the gray-scale is used for visualisation only. We
also display only 5% of matches (lines) for better clarity.

2.4 Pose Estimation

In this step we use known depth information of the database images to estimate
camera pose. The geometrically verified feature points form image-to-image
(2D-2D) correspondence pairs. We use the 2D-2D information to link the 3D
depth data of the database image with the query 2D feature points forming a set
of 2D-3D correspondences. Having access to reliable correspondences between
image points and points in space, we establish a relative position of the image
capture with respect to the points in space and consequently to the database
image with known pose w.r.t. world frame. The relative pose is estimated
via standard P3P solver using locally optimized RANSAC[7]. The pose with
highest support among correspondences is selected. The quality of pose can be
measured in terms of reprojection errors as visualized in Figure 3.

10



Figure 3: The query feature points (yellow) are reprojected back into the query
image (cyan). The magnified (s = 5) reprojection error (magenta) shows the
direction of error. If more reprojection errors display a clear pattern it is a sign
that pose is not well estimated. The feature points with larger reprojection
errors than set threshold (¢t = 2.5° ray angular error) are considered as outliers
(red).

2.5 Camera Pose Verification

In order to re-rank the candidate camera poses and ultimately select one as a
result we perform a verification step. We use the mesh model of the environment
and we render a synthetic image from the candidate pose. We aim to select
a pose which produces the most similar synthetic image to the query. The
similarity is estimated over the whole image. The blank areas of synthetic
image are filled by interpolation or extrapolation of nearby pixels. The similarity
is estimated as the inverse of median square error over Root SIFT descriptor
extracted by DenseSIFT extractor [8, 9]. We use implementation of VLFeat [10]
package. The pose with the highest similarity is then selected as a response to
the query. The Figure 4 shows the final query to synthetic image comparison
for the result pose of query id 275 and Figure 5 shows the top five considered
reference poses. The query id 275 has been localised with 0.07m translation and
2° angular error w.r.t. to the reference pose.
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Figure 4: The comparison of the query image (left) and synthetic view (second
to left). The candidate pose was estimated from a reference database image
(right). The image second to right provides a blend of query and synthetic
image to better inspect residual misalignment.

Figure 5: The comparison of query image (left) and top five pose candidates,
presented as blends (ordered by quality from second-to-left to right image).

3 Modeling Broca Hospital

To validate that our approach is suitable for the hospital environment, we cre-
ated a precise virtual 3D model of Broca hospital. The model is based on visual
data collected as a set of panoramic sweeps by a very precise Matterport3D
measurement unit. We have models of two distinct wings within the hospital:
the Day Care and Living Lab facilities (see Figure 6) in two different view condi-
tions. As D2.1 aims to provide an initial solution to the visual self-localisation
it is expected that a map of the environment in suitable format is provided. The
models as well as the sets of panoramas captured with known poses are used as
the foundation of Broca Hospital environment map.

The panorama set is split into two distinct subsets: the database panora-
mas (90%) and the validation query panoramas (10%). The localisation map
is built from the former.
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Figure 6: Broca Hospital dataset: Floor plans of DayCare (two on the left) and
Living Lab (two on the right) models. Models are named hospital 1, hospital 2,
living lab 1, living lab 2 from left to right respectively. Blue dots display poses
of database panoramas and yellow display panoramas used as queries.

3.1 Localisation Map

We construct our image database by cutting panoramic pictures into a set of
photographs without panoramic distortion and 106°, 90° horizontal and ver-
tical field of view respectively. 12 cutouts with 30° yaw steps are created in
three pitch levels totalling in 36 cutouts to cover the whole panoramic view.
To add depth information we project the corresponding mesh model into the
panorama reference pose. Figure 7 shows an example on one of the panoramas.
The database consist of 9144 cutout images extracted from 254 panoramas.
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Figure 7: The panorama (top) is cut into a set of 36 undistorted images —
cutouts (second row). The depth information(third row) is extracted from 3D
model (bottom row) by projecting the model into the estimated cutout camera
pose.

We observed a varying inconsistency between reference rotations of panora-
mas provided by Matterport and the 3D model. We replaced the reference ro-
tation information by our estimate. See Figure 8 for comparison. We estimate
the true rotation by finding the best alignment of a single cutout to synthetic
views generated by sampling mesh projections under varying rotations.
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Figure 8: Blended mesh projection with a cutout of a panorama. The reference
rotation (left) compared to our estimate (right).

4 Validation

To assess suitability of proposed the method in the hospital environment, we
extract 10% of panoramas prior map creation and evaluate the localisation on
this query subset. The query panoramas are preprocessed in similar fashion
as database panoramas with the only exception that only horizontally aligned
cutouts are used, resulting in only 12 cutouts per panorama compared to 36 in
case of database panoramas. The reason to use horizontal cutouts only is that
cutouts facing floor or ceiling are very difficult to assess even for a human ob-
server. The query set consist of 360 query images extracted from 30 panoramas
selected randomly over all four models.

As can be seen from Figure 6, the models taken at the same part of hospital
cover almost the same area. There are some appearance changes as we removed
blinds, curtains etc. for the second version of models. An example of appearance
changes can be seen in Figure 9. The corresponding models were aligned for
purposes of evaluation. I.e. if a query was taken in one model of a certain
location but localised in a second model of the same location, we mark it as
correct up to distance and angular thresholds.
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Figure 9: Visual difference between hospital 1 and 2 (left pair) or living lab 1
and 2 (right pair).

5 Results

The main evaluation metric is the ratio of correctly localised queries under a
certain distance and certain angular error. We fix the angular threshold to
10°and we evaluate for different distance thresholds ranging from zero up to
two meters. The results displayed in the floor plan can be seen in Figure 12 and
the cumulative results over varying threshold are displayed in Figure 13.

As can be seen, we achieve 94% correct poses (see examples in Figure 10)
within a very strict threshold of only 0.25m. The achieved precision is very high
and is higher than best performing methods in most standard benchmarks [11].
The error is directly derived from imperfections of 3D model and depth map
estimates. From our experience in similar facilities, the imperfections are often
in range of units of cm and it is extremely difficult to localise with better preci-
sion than 10cm as even evaluation results are uncertain in this domain because
of the possible reference ”ground truth” pose errors.

Even though the achieved precision is very high as it can compete with or
directly outperform state-of-the-art localisation results, it is difficult to predict
without real world experiments if this precision will be sufficient to achieve all
goals set in the project. We have plans for multiple improvements to increase
the precision if needed.

From the inspection of the failure cases we see that it is (Figure 11) most
often due to lack of visual information, visual similarity, or repetitive patterns
in the field of view. These issues are notoriously difficult and failures are hard
to avoid.
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Figure 10: Columns from left to right: Well localised query images, projected
mesh from estimated pose, blend of query and mesh projection, database image
used for relative pose estimation.
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Figure 11: Columns from left to right: The failure queries, projected mesh from
estimated pose, blend of query and mesh projection, database image used for
relative pose estimation.
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Figure 12: Results of localisation. Green are displayed queries with translation
error lower than 0.25m and angular error below 10°. Yellow are displayed
queries with translation error between 0.25m and 1m and red are shown ones
with error > 1m. The database panoramas are displayed in blue.
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Figure 13: Final results of Broca dataset evaluation. Results are displayed as
percentage of correctly localised queries within certain distance threshold in
meters and fixed 10°angular threshold.

6 Odometry Integration

The achieved success rate on its own is reasonably high and we would like to
achieve similar results in the final results of the project. It is important to realize
that even though the environment is realistic, this model and query imagery are
somewhat artificial. We aim to develop methods suitable for populated spaces
and that brings many challenging problems. We can expect various forms of
occlusion into query images, caused by people and their belongings naturally
occurring in the environment. We can also expect temporal changes of the
environment itself as furniture may be moved around for various reasons and
therefore the map will not mirror query images as reliably as it is in our initial
experiment.

To compensate for these expected issues, we plan to integrate odometry in-
formation available on-board of ARI. We will mirror human behaviour in case
the field of view is confusing. Natural thing is to turn around or slightly move
to get additional information. We will collect a series of query images with
known relative position and localise based on this batch query. We believe that
the additional reliable constraint in the form of known relative position between
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query images based on ARI’s odometry will help us compensate for the new
challenges introduced in less artificial setup.

Even though we have plans to implement and explore these modifications,
we were mostly not able to do so, as we don’t have access to the robot yet. We
believe that the simulation test we performed reflect reality well enough, and
we are confident that we will be able to achieve comparable results doing real
world experiments. These will be conducted as soon as we have access to the
robot to support this claim. Results with possible corrections will be published
as part of the followup deliverable D2.4 latest.

7 Future Work

We have many ideas how to further enhance quality of localisation. We list here
a few main lines which we want to follow.

7.1 Image Undistortion

Evaluation in real world will bring a new challenge, which was not present in
our experiment. The image acquisition method — most commonly rolling shut-
ter and actual lenses of the camera may cause various distortions of the image.
This can be neglected for most standard cameras as the main and often suffi-
cient parameter — focal length is generally available in EXIF image metadata.
For cameras with severe distortion it might not be enough. That can be com-
pensated by fist camera model selection [12] followed by accurately modeling
the camera parameters and image undistortion which is then passed to the lo-
calisation module.

7.2 Image Retrieval

Even though we did not observe any failure cases due to image retrieval yet,
we expect this to occur in experiments where we introduce various sources of
occlusion (people, temporary object in the scene etc.). Therefore we consider
to examine possibilities of applying self-attention transformer networks which
were recently introduced in the image domain[13].

7.3 Feature Matching, Geometrical Verification and Pose
Estimation

We also look in the possibility to further enhance quality by finding more robust
tentative feature matches [14] and its verification by more complex constrains
than just two homographies. This step is crucial as reliable matching with well
estimated depth is paramount to successful localisation. We also explore possi-
bility of direct pose estimation from images. The neural rendering techniques
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NeRF[15] use a completely different methodology and its preliminary results
look very promising.

8 Software

We present four software packages:

1. Localisation Module — described localisation software derived from
work of H. Taira et al. InLoc[1]

2. Map Construction Module — a package of tools to convert 3D model
with panoramas into an actual localisation map

3. Communication Module — a communication tool to send a query im-
age to the localisation server and receive a response from the ROS[16]
environment.

4. Visitor Module — a dataset exploration tool using AIHabitat [17] which
allows simple tour in any of four datasets.

We provide also directly the localisation map which is quite large (500GB),
it is publicly available at:
https://data.ciirc.cvut.cz/public/projects/2020SPRING /SPRING_Broca_dataset

8.1 Localisation Module

The localisation pipeline is a combination of MATLAB and Python3 imple-
mentation. While the main script is written in MATLAB, specific functions
such as mesh model handling is done in Python. We provide a simple script to
reproduce our results. It is located in

./SPRING/SPRING_Demo/demo_SPRING_dataset.m

folder of the localisation module. The module is publicly available at:
https://data.ciirc.cvut.cz/public/projects /2020SPRING /
SPRING_localisation_module.tar.gz

This is still a research version of our code as the development continues.

8.2 Map Construction Module

The map building tools can be found as part of localisation module on path:

./SPRING/Build_SPRING/*
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The tools allow to construct a localisation database based on panoramas ac-
companied by mesh model and panorama poses w.r.t. the model.

The tools are again, a combination of MATLAB and Python3. The Python
part is responsible for image and model handling, generating cutouts and depth
maps. The MATLAB part precomputes netVLAD embeddings for database
images and sets up links and environmental variables for the localisation module.

8.3 Communication Module

As the Localisation module is quite large and requires a lot of computation, we
assume its usage off-board the robot, preferably on a nearby workstation. We
provide a simple communication tool to send queries from ROS to a workstation.
It follows simple client-server architecture and is available at:
https://data.ciirc.cvut.cz/public/projects /2020SPRING/
SPRING_communication_module.tar.gz

The package contains both client and server side. A ROS client sends a HTTPS
post with image data. The server handles the incoming HTTPS request, reads
out the image and forwards the query to MATLAB. After query is evaluated,
the server side returns response to the request and the ROS client receives the
6DOF pose as .json

8.4 Visitor Module

The visitor module builds on top of AT Habitat [17] and it offers a simple way
to virtually walk through the individual models. The module is available here:
https://data.ciirc.cvut.cz/public/projects /2020SPRING /
SPRING._visitor_module.tar.gz

9 Conclusion

We have presented a fully operational localisation module. The module esti-
mates pose of an image capture by assessing visual similarity by image retrieval
followed by geometric verification and camera pose estimation and finally ranked
by visual similarity of estimated camera pose with the query image. We pre-
sented a newly created Broca dataset — a realistic indoor environment and have
shown that our module works and is able to localise over 94% of query images
within 0.25m of the reference camera pose. We could not include robot’s odome-
try but we provided plan to integrate it as we believe it will be an important tool
to further enhance the results when deployed to cluttered and populated spaces.

We attach additional visual results in from of Appendix to provide deeper
insight of the results achieved.
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A Appendix — Additional Results

We provide additional visual results over 10 randomly selected queries.

Figure 14: Image retrieval step results for 10 randomly sampled queries.
Leftmost image is the query image followed by the top five retrieved images,
sorted from left to right. Ids = [158, 137,275,284, 67, 174, 360, 229, 250, 265]
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Figure 15: Re-ranking after geometrical verification step results for
10 randomly sampled queries. Leftmost image is the query image fol-
lowed by the top five re-ranked images, sorted from left to right. Ids =
[158, 137,275,284, 67,174, 360, 229, 250, 265]

27



Figure 16: Final re-ranking after pose verification step for 10 ran-
domly sampled queries. Leftmost image is the query image followed
by the top five re-ranked images, sorted from left to right. Ids =
[158, 137,275,284, 67,174, 360, 229, 250, 265]
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A.1  Query Id 67

Figure 19: Query Id: 67 Geometrical Verification re-ranking
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Figure 21: Query Id: 67 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A.2  Query Id 137

Figure 22: Query Id: 137 Image retrieval ranking

Figure 24: Query Id: 137 Geometrical Verification re-ranking
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Figure 26: Query Id: 137 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A.3 Query Id 158

Figure 29: Query Id: 158 Geometrical Verification re-ranking
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Figure 31: Query Id: 158 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A.4  Query Id 229

Figure 34: Query Id: 229 Geometrical Verification re-ranking
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Figure 36: Query Id: 229 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A.5 Query Id 250

Figure 38: Query Id: 250 Dense matching

Figure 39: Query Id: 250 Geometrical Verification re-ranking
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Figure 41: Query Id: 250 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A.6  Query Id 265
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Figure 44: Query Id: 265 Geometrical Verification re-ranking
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Figure 46: Query Id: 265 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A7 Query Id 275

Figure 48: Query Id: 275 Dense matching

Figure 49: Query Id: 275 Geometrical Verification re-ranking
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Figure 51: Query Id: 275 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A.8 Query Id 284
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Figure 54: Query Id: 284 Geometrical Verification re-ranking
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Figure 56: Query Id: 284 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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A9 Query Id 360

Figure 59: Query Id: 360 Geometrical Verification re-ranking
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Figure 61: Query Id: 360 Pose verification re-ranking (top), synthetic view
(center), blend with query(bottom)
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