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1 Introduction

This deliverable is part of WP3 of the H2020 SPRING project. The objective of WP3 is “the robust extraction,
from the raw auditory and visual data, of users’ low-level characteristics, namely: position, speaking status and
speech signal.” Following this objective, WP3 has two main outcomes:

1. The Multi-Person Tracking module, jointly exploiting auditory and visual raw data to detect, localise and
track multiple speakers (correpsonds to T3.1).

2. The Diarisation and Separation and the Speech Recognition modules, extracting the desired speaker(s) from
a speech dynamic mixture and recognising the speech utterances from the separated sources, for a static
T3.2 and a moving T3.3 robot.

In this context, the D3.1 should describe the methods and the software used for “Audio-visual speaker tracking
in realistic environments.” Before describing the modular architecture that we have devised for the software,
we mention two important modifications to the original content foreseen for this deliverable. Both are a direct
consequence of the impact of the COVID-19 pandemics on the project’s progress.

Indeed, the software developped in the SPRING project should run on the robotic platform ARI, whose audio-
visual perception capabilities have been enhanced specifically for SPRING. The pandemic stills constrains the
way of conducting experiments in our research laboratories. As a consequence, we are unable now to report the
performance of our software modules in realistic environments. Therefore, all tests reported in this document
have been done either in simulated environments, or on very small datasets to provide a qualitative idea of the
performance, rather than a quantitative evaluation. In addition, we have not been able yet to evaluate the
audio-visual fusion module.

However, we have made progress in other directions, so as to mitigate as much as possible the overall delays in
the WP progress, and in the project as a whole. In this regard, we describe here, not only the methodology and
software used for audio-visual tracking (Sections 2.2, 2.3 and 2.4), but also the first steps towards separation,
diarisation and automatic speech recognition (Sections 2.5 and 2.6).

The rest of the document describes the overall architecture for audio-visual tracking – and more – with ARI, as
well as each of the modules. The document ends drawing some conclusions and future work. The software is
being updated in SPRING-WP3-Repository. As per European Commission requirements, the repository will be
available to the public for a duration of at least four years after the end of the SPRING project. People can
request access to the software to the project coordinator at spring-coord@inria.fr. The software packages will
use ROS (Robotics Operating System) to communicate with each other and with the modules developped in the
other workpackages.

2 Modular Architecture for Audio-Visual Tracking – and more

2.1 Overall Architecture

The overall module architecture for audio-visual tracking is shown in Figure 1. For the time being the auditory
and visual information is fused in a second stage, after localisation cues have been extracted from each modality
independently. As discussed in the introduction, the auditory modaility is also used for separating sources and
extracting transcripts.

2.2 Visual Localisation and Tracking

The goal of this module is to detect, identify and track speakers using visual data. The proposed multi-person
localisation and tracking module is based on a very recent, state-of-the-art system known as FairMOT Zhang
et al. [2020]. It combines the so-called CenterNet Zhou et al. [2019] object detection architecture with Deep Layer
Aggregation (DLA) Yu et al. [2018]. The latter is a general framework that can be used to augment a backbone
architecture of choice to better fuse information among layers.
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Figure 1: Diagram of the overall architecture. The visual and auditory data are processed independently to obtain locali-
sation cues from both modalities. These cues are fused later on to obtain audio-visual tracks. In parallel the audio is also
used to separate sources and to obtain transcripts associated to these sources.

Figure 2: Example of tracking with FairMOT. Left: on the MOT16 dataset. Right: On an image sequence captured by
ARI’s front fish-eye camera.

The original FairMOT system uses as a backbone the highly popular ResNet34 He et al. [2016] network, which
is named DLA34 after the application of deep layer aggregation. Preliminary tracking tests using this system are
very promising, showing good behaviour in multi-person environments and great robustness to occlusions. The
tracker is able to detect, track and identify persons with a label. Figure 2 shows some examples. The image on
the right was taken with ARI’s front fish-eye camera.

Our current efforts in the short term focus on the adaptation of FairMOT to lightweight architectures such as
EfficientNet Tan and Le [2019] or MobileNet Howard et al. [2017], as well as their augmentation with DLA. It
would also be interesting to test the just released DeepMind’s NFNets Brock et al. [2021].

Although the tracker is currently able to perform re-identification of persons (re-ID) upon occlusions or even
short temporal disappearance situations, we still need to deal with the problem of long term re-ID (e.g. someone
reappearing in the scene after several minutes or even hours). With this in mind, we propose to use CANU-
ReID Delorme et al. [2021], a methodology developed at Inria that uses conditional adversarial networks for
unsupervised person re-ID.
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2.3 Audio Localization and Tracking

Localizing and tracking multiple sound sources captured by a microphone array in an actual acoustic environment
is an essential component in robot audition and can also serve as a prerequisite to source separation algorithms
and scene analysis. While sources’ position should be described in a 3D coordinate system, in many important
cases, in particular in robot audition applications, describing the direction of arrivals (DOAs) of the sources of
interest w.r.t. the microphone array suffices.

While propagating in real-life acoustic enclosure, the sound wave undergoes reflections from the room facets and
from various objects, a phenomenon often referred to as reverberation. These reflections may deteriorate the
performance of most sound localization algorithms, as they mask the main arrival. Moreover, the dynamic nature
of the scene with sources free to move w.r.t. the microphone array (assumed, at this stage, to be static) further
complicates the problem, as the amount of available data in each position is limited, necessitating fast tracking
capabilities of the algorithm.

In Hammer et al. [2020], we propose a multi-speaker DOA estimation algorithm that is based on the U-net
architecture Ronneberger et al. [2015] that infers the DOA of each time-frequency (TF) bin. The main contribution
of our work is casting the time-domain DOA estimation problem into a time-frequency segmentation problem. It
is well-known that for speech signals, each time-frequency bin is dominated by a different speaker, a property
referred to as W-disjoint orthogonality (WDO) Yilmaz and Rickard [2004]. Based on this property, in the case of
multiple speakers, each TF bin can therefore be associated with a different DOA. This high-resolution information
can yield an improved DOA estimation, especially in the case of multiple speakers. In this work, we adopted the
instantaneous realative transfer function (RTF) as the input feature to the model, as it is known to encapsulate
the spatial fingerprint of a sound source Laufer-Goldshtein et al. [2020]. As the instantaneous variant uses only
the current frame (or at most a few context frames), it may facilitate source tracking in dynamic scenarios.

We tested the proposed method with generated reverberant speech data, using the publicly available dataset of
room impulse responses (RIRs) recorded at the acoustic lab, Bar-Ilan University Hadad et al. [2014], as well as with
real-life recording of moving speakers at the same lab. We compared the method to both classical localization
methods, namely MUSIC Schmidt [1986] and the SRP-PHAT Brandstein and Silverman [1997], as well as to
the state-of-the-art, full-band convolutional neural network (CNN)-based method, denoted CNN multi-speaker
DOA (CMS-DOA) Chakrabarty and Habets [2019].

As a byproduct of the DOA tracking algorithm, we also derived a separation scheme, based on TF masking, which
can be applied to moving speakers in a reverberant environment. The distortion level of the output signals is still
under investigation.

The localization performance was tested using two objective methods. The mean absolute error (MAE) is defined
as:

MAE(◦) =
1

N · C
C�

c=1

min
π∈SN

N�

n=1

|θcn − θ̂cπ(n)|,

where N is the number of simultaneously active speakers and C is the total number of speech mixture segments
considered for evaluation for a specific acoustic condition. The term π is the permutation and SN represents the
permutation possibilities.

The localization accuracy is given by

Acc.(%) =
Ĉacc.

C
× 100

where Ĉacc. denotes the number of speech mixtures for which the localization of the speakers is accurate. We
considered the localization of speakers for a speech frame to be accurate if the angular distance between the true
and the estimated DOA for all the speakers was less than or equal to 5◦. Results for static scenarios are given
in Table 1. The tracking capabilities of the proposed scheme can be demonstrated by assessing the estimated
trajectories in Fig. 3. It is evident that the proposed algorithm significantly outperforms state-of-the-art methods.

In the first year of the project we also developed a few alternative localization and tracking schemes, based on
variational autoencoder (VAE) Bianco et al. [2020, 2021], manifold learning and expectation maximization (EM)
Bross et al. [2020], fully-connected deep neural network (DNN) with ranking loss Opochinsky et al. [2021], and
factor graphs Weisberg et al. [2020], the latter also supporting source separation in dynamic scenarios.

5



Table 1: Results for three different rooms at distances of 1 m and 2 m with measured RIRs.

Distance 1 m 2 m

RT60 0.160 s 0.360 s 0.610 s 0.160 s 0.360 s 0.610 s

Measure MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc.

MUSIC 18.7 57.6 19.2 53.2 21.9 42.9 18.4 54.1 26.1 35.8 25.4 32.2
SRP-PHAT 9.0 39.0 13.9 39.4 18.6 29.9 9.7 36.0 16.5 24.7 27.7 21.3
CMS-DOA 1.6 76.3 7.3 75.2 8.4 71.9 5.1 79.5 9.7 60.1 17.5 40.0
TF-DOAnet 1.3 97.5 3.5 83.5 0.9 98.3 5.0 89.5 1.7 95.7 4.8 84.2

(a) Ground truth (b) CMS-DOA (c) TF-DOAnet

Figure 3: Real-life recording of two moving speakers at BIU acoustic lab with T60 = 720 ms.

2.4 Audio-visual Fusion for Trakcing

In order to fuse the localisation information from the auditory and visual modalities, we have selected a recently
published method based on variational Bayes inference Ban et al. [2019], Alameda-Pineda et al. [2019]. We have
chosen this methodology for two main reasons. First, it decouples people tracking from the person-to-observation
assignment in two different steps. This means that, within the same methodology we can test different tracking
methods and different assignment algorithms, and thus choose the combination that best suits the computational
and perception capabilities of the ARI robot. Second, because the audio-visual mapping used is explicit, and
therefore can be interchanged with the audio-visual mapping corresponding to the ARI robot. Indeed, some
recent methods learn the audio-visual mapping together with the tracking dynamics, offering better performance,
but conditioning the use of such method to the availability of a large training set collected with the platform-of-use,
something we cannot afford in SPRING. At the time of writting the report, we have not been able to test this
module yet, since it depends on the availability of the two first modules.

2.5 Extra: Separation and Diarisation

During the first year of the project we started the task of speaker separation and diarisation earlier than planned
to compensate for the delay caused in data collection and real-life experiments with the ARI robot.

We have developed several alternative solutions to the problem of speaker separation, e.g. a methods based on the
EM algorithm Eisenberg et al. [2020], variational Bayes Laufer and Gannot [2020a,b], and factor graphs Weisberg
et al. [2020] (for joint tracking and separation). Two of the main efforts addressing the speaker separation task
are discussed in more details below.

2.5.1 Probabilistic Method (Static Scenario)

Speaker diarisation and separation were often separately treated in the literature. We claim that these tasks are
strongly interlaced in realistic multi-speaker scenarios Kounades-Bastian et al. [2017], Laufer-Goldshtein et al.
[2021] that are characterized by partly overlapping speech utterances.
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Of particular interest are methods based on a probabilistic framework that analyze the correlation between frames
Laufer-Goldshtein et al. [2021]. Two variants that are based on either simplex analysis or linear programming are
derived.

In Table 2 we report signal-to-interderence ratio (SIR) results for both infrequent speakers and balanced speakers
in two reverberation levels (‘low’ - 150ms, ‘high’ - 550 ms). We also compare the results of the newly proposed
algorithms with two state-of-the-art speaker separation algorithms, namely ’Simplex-EVD Laufer-Goldshtein et al.
[2018] and ILRMA Kitamura et al. [2016]. The results were obtained using human speakers holding a conversation
recorded at BIU acoustic lab.

Table 2: Distributed array: SIR scores - mixtures with unbalanced activity for ‘Low’/ ‘High’ reverberation and for ‘5%’
/‘10%’ activity of the 1st speaker

Reverb. Activity Prec. Infrequent speaker Balanced speakers

Ideal Max-Corr Simplex-Corr Simplex-EVD ILRMA Ideal Max-Corr Simplex-Corr Simplex-EVD ILRMA

Low
5 % 19.87 16.82 12.11 8.64 1.54 23.77 21.03 22.23 22.04 11.89
10 % 21.61 19.79 16.98 16.72 6.00 23.65 20.86 21.92 22.22 10.38

High
5 % 17.46 14.03 12.34 6.26 -1.34 22.38 19.05 21.11 21.10 10.63
10 % 19.18 14.13 16.22 15.50 3.17 22.33 18.29 20.38 20.83 9.82

It is evident that the proposed methods outperform the state-of-the-art for speakers with low activity, which may
be expected in the use-cases of SPRING, and exhibit comparable results to the Simplex-EVD (also developed by
BIU) for the balanced activity case.

However, these methods are yet not adapted to dynamic scenes where the sources and the microphone array can
move. We expect to further adjust these methods in the course of the project.

2.5.2 DNN-Based Control Mechanism for Beamformers

Our main research effort in addressing the speaker separation problem is the derivation of a new control mechanism
for the linearly constrained minimum variance (LCMV) beamformer. Since introduced in the context of desired
speaker extraction Markovich et al. [2009], beamformers based on the LCMV criterion, specifically those utilizing
the RTF, are widely used for processing conversations held in acoustic environments.

The actual application of the LCMV beamformer to the speaker diarisation and separation tasks necessitates
accurate estimates of its building blocks, e.g. the noise spatial cross-power spectral density (cPSD) matrix and the
RTFs of all sources of interest. An accurate classification of the input frames to various speaker activity patterns
can facilitate such an estimation procedure.

Following our previous contributions Chazan et al. [2018a,b] we propose a new DNN-based control mechanism
with two outputs. The first output is a concurrent speaker activity detector (CSAD) that classifies the noisy
frames into three classes:

CSAD(l) =





Class #0 J(l) = 0; Noise only

Class #1 J(l) = 1; Single-speaker activity

Class #2 J(l) > 1; Multi-speaker activity

where J(l) is the number of active speakers in frame l. In Class #0 all speakers are inactive - the frames are used
for updating the noise spatial cPSD matrix; in Class #1 only a single speaker is active - these frames are used
for estimating the RTF of the active speaker; and in Case #2 more than one speaker are active - the updating
procedures are deactivated and the current estimates are maintained.

We propose to add a second output to the network, which in parallel to the CSAD, estimates the DOA associated
with single-speaker frames, namely frames for which CSAD(l) = 1. The DOA estimation is recast as a classification
problem to several angle ranges rather than a regression problem:

DOA(l) =





DOA #0 θ ∈ [θ0, θ1)

DOA #1 θ ∈ [θ1, θ2)
...

DOA #(N − 1) θ ∈ [θN−2, θN−1]

.
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The dual CSAD-DOA controller has two advantages over the CSAD-only controller. First, it is experimentally
shown to provide better frame classification. Second, and more importantly, it associates a spatial label to each
speaker, enabling consistent speaker separation, especially in dynamic scenarios with intermittent activity patterns
of the various speakers in the scene. Moreover, this spatial label, extracted from the audio signal, may be used
together with spatial visual information to improve the performance of the beamformer.

In Fig. 4 we demonstrate typical dynamic scenarios with specific actions taken to switch between the stored
correlation matrices for maintaining accurate and smooth tracking of the various speakers.

Figure 4: Algorithm flow

Preliminary simulation study has shown that the joint activity detector and DOA estimator is accurately detecting
the states of the speakers thus facilitating good separation capabilities even for moving speakers with arbitrary
activity patterns. These encouraging results were demonstrated even in cases of mismatch between the training
and test phases in terms of acoustic conditions and microphone-room constellations. The array itself was identical
in both phases as expected for the robot audition application.

Preliminary results of the separation capabilities in a dynamic scenario, with one speaker moving around its
position and the second progresses towards him are depicted in Fig. 5.

An interesting intermediate conclusion is that joining the tasks of localization/tracking and speaker separation
might be beneficial. We will further investigate this conclusion in the coming months.

2.5.3 Enhancement and Derverberation

Finally, we have developed two enhancement algorithms that can be used in conjunction with the LCMV beam-
former. The first is a single-microphone noise reduction algorithm Chazan et al. [2021] based on a mixture of deep
experts, that can serve as a post-filtering stage at the output of the beamformer. The second is a multichannel
dereverberation algorithm, based on deep sets Yemini et al. [2020], that can be applied to the separated speakers.
Both algorithms exhibit excellent results when applied in various real-life conditions.

2.6 Extra: Automatic Speech Recognition (ASR)

The performance of the automatic speech recognition (ASR) system has a crucial impact on the quality of the
robot-patients/personnel interaction and on the action planning of the robot. We have tested cloud-based services
as well as offline systems.
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(a) Speakers’ trajectory

(b) Separated first speaker (c) Separated second speaker

Figure 5: Example of speaker separation in dynamic scenario (medium level reverberation.)

For the English ASR we have used the entire TIMIT test corpus Garofolo et al. [1993]. To test the performance
degradation due to room acoustics we have used a publicly available database of RIRs1 Hadad et al. [2014].

The RIRs were recorded in the 6 × 6 × 2.4 m acoustic lab at Bar-Ilan University (BIU). The reverberation time
was set to three different levels, T60 = 160, 360, 610 ms, by configuring 60 dedicated panels attached to the room
walls, ceiling and floor. For the ASR experiments we only used one of the microphones in the database. The
loudspeakers configuration is depicted in Fig. 6. To generate the microphone signals, we convolved each of the

Figure 6: loudspeaker configuration for the BIU acoustic lab database.

clean speech TIMIT utterances with the randomly chosen RIR drawn from all possible angles and distances as
depicted in the figure. Then, diffuse noise recorded in the same conditions, was added to the microphone signal.

The word error rate (WER) obtained by Google and IBM cloud services (for both batch and streaming modes) can
be found in Table 3. It can be deduced that reverberation severely deteriorates the obtained WER and that the

1http://www.eng.biu.ac.il/~gannot/RIR_DATABASE/
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Table 3: ASR WER results in reverberant and noisy environment.

SNR [dB] 5 dB 10 dB 15 dB

T60 [ms] 160 360 610 160 360 610 160 360 610

Google 0.12 0.169 0.318 0.115 0.162 0.288 0.115 0.155 0.274
IBM 0.17 0.30 0.58 0.15 0.27 0.51 0.14 0.23 0.49

Google service is more robust to reverberation. Yet, these results emphasize the importance of speech enhancement
and dereverberation algorithms in the dialogue system pipeline.

We have also started to evaluate the performance of a French ASR engine based on KALDI/VOSK ASR with
Python Interface. Preliminary evaluation was carried out using 100 sentences drawn from a dataset provided by
Facebook.2. The obtained WER was 0.29 which is a very high value A preliminary test using Google French ASR
yields similar results. This issue is still under investigation.

Current work:

• Investigation of the low performance of the French ASR engine.

• Check availability of KALDI/VOSK Streaming ASR interface.

• Check option of getting word-level confidence in streaming mode.

• Compare the performance of all ASR cloud services in English and French: IBM, AZURE, AWS, GOOGLE.

3 Conclusions and Future Work

In this document we have described the current state of the audio-visual tracking software in realistic environments
for ARI. Due to the delay consequence of the pandemics, we have been able neither to test the software in realistic
environments nor to assess the quality of the audio-visual fusion module.

Our immediate future work is to address these two issues, and we will do that as soon as we can conduct experiments
with the robotic platform in our respective research facilities. In parallel, we will keep on developing methods for
the rest of the tasks of WP3, and to adapt our software to the needs of other WPs.

References

SPRING-WP3-Repository. SPRING WP3 Repository. https://gitlab.inria.fr/spring/wp3_av_perception.

Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot: On the fairness of detection
and re-identification in multiple object tracking. arXiv e-prints, pages arXiv–2004, 2020.
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