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Contents of the Deliverable

The objective of Work Package 6 is to develop and implement methodologies enabling the robot to automatically
learn action policies to decide

1. how to explore the environment

2. how to move towards one or several persons in order to improve the quality of the sensory data (images and
acoustic signals)

3. how to attract the attention of the selected persons in order to facilitate face-to-face communication

4. action policies for multi-party conversation.

The different modules in this work package take as input the high level information provided by other work
packages: a map of the environment (WP2), human behavior (WP4), localization and identification of people with
respect to the robot (WP3). WP3 can also provide some metrics about audio-visual quality. The outputs are
given as robot actions, in the form of gestures, conversation actions, as well as motor commands.

In this document, we present the different architectures that will be developed in the SPRING project to implement
these behaviors. For both verbal and non-verbal behavior, we combine machine learning architectures with non-
learned control schemes: obtaining labeled or even varied data for social robotic scenarios is hard. Therefore,
the whole architecture of the robot is not completely centered around deep learning, but some parts use a-priori
knowledge and ad-hoc methods. Learned and non learned methods are split in different sections, to emphasize the
complementarity of both approaches.

The general architecture of the robot software will be composed of several modules: a social interaction planner,
deciding who to interact with and how, a navigation module, and a conversation system. Eventually, all these
components will interact with each other. All the modules will be integrated in the dedicated repository on the
SPRING project organization on the INRIA Gitlab 1. As per European Commission requirements, the repository
will be available to the public for a duration of at least four years after the end of the SPRING project. They will
use ROS [Stanford Artificial Intelligence Laboratory et al.] to communicate with each other and with the robot
motor commands.

The document is organized as follows: in section 1, we present the deep learning architectures that will be developed
for the non-verbal behavior of ARI; in section 2, we present the non-learned control scheme which will be combined
with these architecture to provide the low-level controller of the robot. Section 3 presents the architectures for
learning the social interaction behavior. Section 4 presents the architectures and method used for action policies
in multi-party conversation.

1https://gitlab.inria.fr/spring/wp6_robot_behavior
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1 Deep reinforcement learning architecture for non-verbal behavior

Non-verbal behaviors in the SPRING project are comprised of navigation and gesture (mainly arm, head and
eye movements) behaviors. Different navigation and gesture tasks are part of the movement set that have to be
provided for the ARI robot. For example, to navigate the robot to a goal position while avoiding obstacles, or to
navigate the robot towards a person or a group of people to start a conversation. Many of these tasks are complex
and based on high-dimensional variables such as the camera or auditory input from the robot. The classical
approach to hand-engineer the behaviors for all these scenarios is too time-consuming and might not be possible
in some cases due to the task complexity. As a solution, the SPRING project is using the deep reinforcement
learning framework to learn most of the navigation and some of the gesture behaviors. Deep reinforcement learning
is a machine learning approach to learn multi-step decision tasks while being able to handle complex and high-
dimensional state input.

This section introduces first the general framework of reinforcement learning (Sec. 1.1) before discussing deep
reinforcement learning (Sec. 1.2). Sec. 1.3 outlines the framework of transfer and meta learning. These mechanisms
will be applied during the SPRING project to reduce the high amount of data and robotic experiments that are
usually needed for deep reinforcement learning. The final section discusses the learning environment and how the
reinforcement learning tasks are defined (Sec. 1.4).

1.1 Reinforcement Learning

This section introduces fundamental aspects of the reinforcement learning framework. Please refer to [Sutton and
Barto, 2018] for a comprehensive introduction. Reinforcement learning uses the framework of Markov Decision
Processes (MDP’s) to formalize its learning tasks [Bellman, 1957, Puterman, 1994]. A MDP is a tuple:

MDP = (S,A, T,R) ,

where S is a set of states, and A a set of actions. T is a transition probability function with T : S×A×S 7→ [0, 1],
and R a reward function with R : S ×A× S 7→ R.

States S are possible situations in which the agent has to make a decision. The agent in the SPRING project is
the ARI robot. States can be discrete S ∈ N, continuous (S ∈ R), and multi-dimensional (S ∈ Rn). In a state, the
agent has to choose between a set of actions A = {a1, . . . , aK}. Actions are usually a discrete finite set A ∈ N but
can also be continuous and multi-dimensional (A ∈ Rn). Depending on the agent’s current state st at time point t
and its action at, it transitions to the next state st+1. The transition function T defines a probability distribution
over the successor states, given the current state and action: T (st, at, st+1) = Pr(st+1|st, at). Transitions fulfill
the Markov Property, i.e. a transition only depends on the current state and not on previous states. The time of
a transition is measured in discrete steps with t = (0, 1, . . . , T ).

For each transition, the agent gains a reward according to the reward function R. The reward is a real-valued
scalar and the general goal of the agent is to maximize the sum over the reward. The reward function can be
defined over different elements of a transition at time point t. The reward function might depend only on the state
and action at t: rt = R(st, at), or only on the state it transitions into: rt = R(st+1), but it can also depend on
all three components: rt = R(st, at, st+1). Rewards may also be probabilistic. In this case, the reward function is
the probability distribution over the rewards for a transition: R(st, at, st+1) = Pr(rt|st, at, st+1).

The agent starts to interact with a MDP by initializing in a start state st=0 at time point t = 0 according to an
initial state distribution. From there, the agent decides upon an action at=0, transitions to the next state st=1,
and receives a reward rt=0. The behavior of an agent, i.e. which action it chooses, is defined by its policy π. A
policy can be either a deterministic mapping from a state to an action: a = π(s), or a probability distribution
over the actions per state: π(a; s) = Pr(a|s).

Two major types of tasks are distinguished: episodic and continuous MDPs. Episodic MDPs consist of several
episodes or runs. Each episode starts in an initial state and ends if a terminal condition is fulfilled. In many cases,
a set SG ⊂ S of goals or terminal states are defined. An episode ends if the agent enters one of them. Continuous
MDPs have no terminal condition. In that case, the number of steps goes to infinity. Control problems are often
formulated as continuous tasks, for example, in the case of a pendulum swing-up task where an inverted pendulum
should the balanced at its top position. Episodic tasks are often used for decision problems, for example, to find
the optimal path to a goal state.
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The goal or objective of an agent is to find a policy that maximizes the rewards that the agent can gather in a
MDP. Two major types of objectives exist. The first is the maximization of the expected discounted future reward
sum:

E

[ ∞∑
t=0

γtrt

]
= E[r0 + γr1 + γ2r2 + γ3r3 + · · · ] , (1)

where γ ∈ [0, 1) is a discount factor. The objective is formulated as an expectation because trajectories are
stochastic. Trajectories are a random variable because the transition or the reward function can be probabilistic,
or the policy itself may be probabilistic. The sum of the expected discounted future reward is mainly used as
objective for episodic tasks. The effect of the discount factor γ is to reduce the weight of temporally distant
rewards in the sum. The second common objective is the maximization of the expected average reward:

lim
T→∞

E

[
1

T

T−1∑
t=0

rt

]
. (2)

This objective is mainly used in the case of continuous tasks, because it has a stronger bound on the sum as t
goes to infinity. Which objective is used depends on the type of task. Moreover, different algorithms exist for
maximizing each objective.

1.1.1 Reinforcement Learning Algorithms

The following section gives a general overview over reinforcement learning algorithms and their classification. The
goal of all algorithms is to learn the policy that maximizes the reward sum in a MDP, as defined by the objective
(Eqs. 1 or 2). Algorithms can be categorized according to the information they use to optimize the policy and
how they represent the policy.

One major classification is the distinction between model-free and model-based approaches. Model-free approaches
learn the policy based on data from observed trajectories of the agent interacting with the MDP. Model-based
methods use a model of the MDP, where the model describes the transition probability and the reward function.
The model can be either given, or learned from observed trajectories.

Moreover, algorithms are differentiated into value-based, policy-based and actor-critic approaches. Value-based
algorithms learn a value function to optimize the expected reward sum. The value for a state represents the
expected future reward sum if the agent follows a certain policy starting from that state. This information is used
to find the policy that maximizes the value. In contrast, policy-based algorithms do not learn a value function
to optimize the policy. Instead the policy is optimized directly. Actor-critic methods represent a mixture of
value-based and policy-based methods as they learn a value-function and optimize the policy in parallel.

For the SPRING project model-free reinforcement learning methods will be mainly utilized. Their advantage over
model-based methods is that they do not need a model of the environment. Defining or learning a model in the
context of social robotics is especially problematic as humans with which the robot needs to interact show rich
and often difficult to model behavior. This makes it difficult to apply model-based approaches.

The following sections will give an introduction to the three major classes of model-free algorithms: value-based,
policy-based and actor-critic methods.

Value-Based Algorithms

The central element of value-based algorithms is the value function [Bellman, 1957] which associates a value with
states or state-action pairs. Values describe predictions about the future outcome of being in these states or taking
these actions in terms of the expected future reward sum. Based on this notion, an agent can decide to go to
states and to take actions that maximize the reward sum. We concentrate here on the objective of maximizing
the discounted future reward sum (Eq. 1).

The value function can be formulated as a state-value function V (s) or an action-value function Q(s, a), called a
Q-function. The value of a state is the expected discounted reward sum starting at state s and using policy π in
successive states:

V π(st) ≡ Eπ

[ ∞∑
k=0

γkrt+k

]
,
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where γ ∈ [0, 1) is the discount factor. The value of a state-action pair, called a Q-value, is the expected discounted
reward sum starting from s using action a and following policy π:

Qπ(st, at) ≡ Eπ

[ ∞∑
k=0

γkrt+k

]
.

Bellman [1957] showed that the value function can be recursively defined in terms of the immediate reward and
the value of the succeeding state:

V π(st) = Eπ
[
rt + γrt+1 + γ2rt+2 + . . .

]
= Eπ

[
rt + γV π(st+1)

]
=

∑
st+1∈S

T (st, at, st+1)

( ∑
at∈A

π(at; st)R(st, at, st+1) + γV (st+1)

)
,

This so called Bellman Equation can be also formulated for the Q-function:

Qπ(st, at) = Eπ
[
rt + γrt+1 + γ2rt+2 + . . .

]
= Eπ

[
rt + γQπ(st+1, π(st+1))

]
=

∑
st+1∈S

T (st, at, st+1)

(
R(st, at, st+1) + γ

∑
at+1∈A

π(at+1; st+1)Qπ(st+1, at+1)

)
.

Values depend on a policy and measure the expected discounted future reward that the policy produces. The goal
is to find the optimal policy π∗ that maximizes the value function for each state (∀s ∈ S, π : V π

∗
(s) ≥ V π(s)).

Bellman showed that the optimal value can be reached, if for each state, the action that maximizes the immediate
reward and the optimal discounted value of the successor state is chosen:

V ∗(st) = max
at

∑
st+1∈S

T (st, at, st+1)

(
R(st, at) + γV ∗(st+1)

)
,

Q∗(st, at) =
∑

st+1∈S
T (st, at, st+1)

(
R(st, at, st+1) + γmax

at+1

Q∗(st+1, at+1)

)
.

If the optimal state-value function is given, the optimal deterministic policy can be deduced by:

π∗(st) = argmax
at

∑
st+1∈S

T (st, at, st+1)

(
R(st, at, st+1) + γV ∗(st+1)

)
.

The expression shows that the transition probability function T , and therefore a model is still necessary to identify
the optimal policy. This is not necessary for the optimal Q-function where the optimal policy is given by:

π∗(st) = argmax
at

Q∗(st, at) .

As a consequence, model-free methods generally use Q-functions instead of state-value functions.

In summary, the value function represents the expected future discounted reward sum that an agent will receive
if it follows a certain policy. Given the optimal value function the optimal policy for an MDP can be deduced.
Value-based methods use this property by learning the optimal value-function to find the optimal policy.

One of the main approaches to learn the value function is temporal difference (TD) learning [Sutton and Barto,
2018]. These methods make use of the recursive property of the value function, allowing them to perform boot-
strapping. TD learning predicts the Q-function for an agent with policy π. It starts with an initial Q-function
that can be arbitrarily initialized. The Q-function is updated after each transition of the agent from state st with
action at to state st+1. Qπ(st, at) is the agent’s prediction of the sum of the expected reward E[rt] of this step and
the expected discounted sum over all future steps according to policy π: E

[
γQπ(st+1, at+1)

]
. After the transition

the agent observed the reward rt and the Q-value of the next state. Based on this observation the TD error δt is
computed:

δt = rt + γQπ(st+1, at+1)︸ ︷︷ ︸
observation

−Qπ(st, at)︸ ︷︷ ︸
prediction

, (3)
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which is the difference between the prediction and the observation. The next action at+1 follows the policy of
the agent. The difference between the prediction and observation is employed to update the prediction using the
Robbins-Monro approach for stochastic approximation [Robbins and Monro, 1951]:

Qπ(st, at)← Qπ(st, at) + αδt ,

where the learning rate α ∈ [0, 1] defines how strong the update is. If α is not constant, but decays over time in
an appropriate way, the algorithm will converge to the true prediction of Qπ.

A prominent TD algorithm is Q-learning [Watkins, 1989, Watkins and Dayan, 1992]. Its purpose is to learn the
values for the optimal policy π∗. It achieves this by updating the prediction after an observation with the Q-value
for the action that maximizes the value over the next state:

Q(st, at)← Q(st, at) + α

(
rt + γmax

at+1

Q(st+1, at+1)−Q(st, at)

)
. (4)

Because of the max operator, Q-learning is an off-policy algorithm. It learns the value function of the optimal
policy regardless of the policy that is used to produce the observations.

Policy-Based Methods

Policy-based methods represent a different class of reinforcement learning algorithms. They learn directly the policy
without learning or representing a value-function. For this purpose, the policy π(a; s, θ) is usually parameterized
by a vector of parameters θ ∈ Rn. The parameters determine the probabilities over the actions for each state.
Often, the average reward objective is used in this context (Eq. 2) and the goal is to find the parameters that
maximize it:

argmax
θ

Eπθ

[ ∞∑
t=0

γtrt

]
.

Many methods in this class use a gradient ascent approach by computing the gradient of the policy parameters
with respect to the objective [Deisenroth et al., 2011]:

∇J(θ) = ∇Eπθ

[ ∞∑
t=0

γtrt

]
.

The gradient determines how the parameters should be changed to improve the objective. It can be computed for
a point in the parameter space by sampling trajectories with policies based on parameters around it. Parameters
are then adapted according to the gradient and the process is repeated:

θ ← θ + α∇J(θ) .

Actor-Critic Methods

Actor-critic algorithms are a mix of value-based and policy-based methods. They learn a policy, called actor, and
a value function, called critic, together. In difference to value-based methods, the critic is usually a state-value
function instead of a Q-function. The critic is learned via the TD learning mechanism, i.e. for a transition the
value is updated via:

V (st)← V (st) + αδt with δt = rt + γV (st+1)− V (st) .

The parameters of the actor πθ are then updated according to the TD error δt:

θ ← θ + α∇θπθ(at|st)δt ,

so that if the used action at results in a higher expected return than predicted by the current critic V (st), its
probability of being chosen increases. If it results in a lower expected return as predicted, its probability gets
reduced.

An advantage of actor-critic methods over value-based methods is that they can handle continuous action spaces.
These are difficult to learn with Q-functions, as the max-operator is needed over all actions to identify the best
action which is infeasible to compute for an infinite continuous action set. Moreover, the state-value function is
less complex as the Q-function. An advantage over policy based methods is that the usage of the value function
reduces the variance of the policy updates and accelerates learning [Sutton and Barto, 2018].
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1.2 Deep Reinforcement Learning Framework

An important part of reinforcement learning is how its components such as the value function or policy are
represented. This representation depends on the type of state spaces of the problems. For problems with finite
and discrete state spaces a simple tabular representation can be used, i.e. each value is represented by a scalar value
in the memory. Nonetheless, in the SPRING project, the state space is continuous and often high-dimensional
S ∈ Rn, consisting of multi-modal continuous sensor information or preprocessed features such as camera images,
a semantic 2D map, auditory input, or human behavior descriptions. Function approximators are needed to
represent a value-function (V or Q) or a policy (π) over such a continuous space. The approximators represent
continuous functions using a parameterized models, for example to represent the Q-function:

Qπθ (st, at) = Eπ

[ ∞∑
k=0

γk ∗ rt+k

]
,

where θ ∈ RN are the parameters of the model that define the approximated Q-function. The goal of a TD
algorithms is to learn the parameters that optimize the Q-function:

θ∗ = argmax
θ

Qθ .

Early function approximators such as linear functions, decision trees, or tile coding [Sutton and Barto, 2018]
represent ”shallow” approximators as their complexity and their number of parameters are low. Such models are
only appropriate for problems with low-dimensional state spaces. The framework of deep reinforcement learning
(DRL) uses instead deep neural networks (DNNs) having many network layers and parameters to represent its
components (See Li [2017] for a review about DRL). DNNs are able to represent high-dimensional functions and
the recent breakthrough in deep learning allowed to efficiently train such networks [Goodfellow et al., 2016].

A problem with the usage of non-linear function approximators such as deep neural networks is that classical
RL methods become unstable or even divergent [Tsitsiklis and Van Roy, 1997]. Recent advances in DRL have
overcome this problems by introducing techniques such as replay buffers or target networks. Several algorithms
have been proposed to allow the usage of deep neural networks together with reinforcement learning such as
value-based methods: Deep Q Networks [Mnih et al., 2015], policy based-methods: Guided Policy Search [Levine
and Koltun, 2013, Levine et al., 2016], and actor-critic methods: Soft Actor Critic [Haarnoja et al., 2018]. The
SPRING project will use such algorithms as its basic framework to learn the robotic behaviors.

For the implementation and training of the DNN structures the PyTorch framework [Paszke et al., 2017] will be
used. Its relevant features for the SPRING project are:

• easy implementation of deep neural network models,

• support of automatic gradient computation needed for the training of the networks,

• the usage of graphics processing units (GPU) for efficient computation,

• a vast library of existing DNN and DRL structures and algorithms based on PyTorch,

• open source.

1.3 Transfer Learning and Meta Reinforcement Learning

A problematic point of deep reinforcement learning is the amount of data that is required to learn appropriate
policies. The agent needs to explore a lot of the state space and observe the outcomes of different actions to
identify the best action per state. In the context of robotics, this learning process takes a long time.

Furthermore, the learned behavior depends on the reward function that has to be defined by the user. However,
it is often not foreseeable what behavior will result from a reward function. For example, in a navigation task
where the robot has to approach a human, the reward function could have a component which punishes strong
movements. This should ensures that the robot is not learning a policy that behaves erratic or approaches a
human with a too high velocity. How strong this component influences the whole reward function can lead to
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vastly different behaviors. If the punishment is too small, then the robot might approach a human too fast and is
perceived as threatening. If the punishment is too large, then the robot might approach too slow or does not move
around obstacles to reach the human. Often, the reward function needs to be adapted to learn an appropriate
behavior. For classical reinforcement learning the task would have to be learned from scratch for each new reward
function costing a lot of time.

As a solution to these problems the SPRING project will utilize transfer learning and meta learning techniques.
Transfer and meta learning methods transfer knowledge from already learned source tasks to target tasks [Taylor
and Stone, 2009, Lazaric, 2012, Zhu et al., 2020]. The goal is to improve learning performance on the target
task. This enhancement can improve the learning speed, resulting in a higher initial performance, or a higher final
performance after learning on the target task. Methods for two scenarios will be explored and applied. The first is
the ”simulation to real transfer” (sim2real) and the second the transfer of knowledge between tasks with changing
reward functions.

The first approach targets to reduce the learning time on the physical robot using initially a simulation of the robot
and its environment to train the robot behavior. Training in a simulation reduces the need of costly experiments
with the physical robot. Nonetheless, a simulation can not replicate exactly the real physical world and the relevant
task features such as the reaction of humans. The policies learned in simulation perform usually not well on the
physical robot directly. As a consequence, various methods have been explored to allow the transfer of policies
learned in simulation to the physical system. For example, by learning a policy that has to cope with different
simulation behaviors to become more robust to different environments [Chebotar et al., 2019].

The second approach targets to reduce the cost of learning for tasks where the reward function is changing such
as due to incremental adaptations of it by the user. The goal is to transfer knowledge from already trained tasks
under different reward functions to the same task but with a new reward function. Existing methods have for
example achieved such transfers by reevaluating the performance of previously learned policies from tasks with
different reward functions in a new task [Barreto et al., 2016]. Given a new reward function, the best policy that
has been learned so far can be selected and used as an initial policy for the new task. Such mechanisms reduce
the need for exploration in the new task and speed up the learning process. During the SPRING project such
methods and sim2real transfer approaches will be used and further developed.

1.4 Learning Environments and Task Definitions

This section describes the general environment used for the reinforcement learning experiments and how the
different components of the tasks are defined, i.e. the state space, action space, and the reward functions.

The SPRING project will use simulations and experiments on the physical robot to learn the robot behaviors.
Different simulators are utilized depending on the task requirements. For example, a 2D simulator will be utilized
to learn approaching behaviors of the robot to individuals and groups, simulating the 2D positions, body and
head orientations and velocities of people in hospital scenarios. The targeted behavior is initially learned using
simulator. A sim2real mechanism is then used to transfer the learned policy to the robot and finish the training
using real world scenarios (Sec. 1.3).

The state space S for the reinforcement learning tasks will depend on the task and can range from low-level
sensor input, such as camera images or audio recordings, to high-level features such as the positions and postures
of people. Deep neural networks are used to learn the appropriate representations from these state variables to
represent successfully value-functions or policies (Sec. 1.2).

The action space A will be comprised of high-level actions that are then executed by the low-level controller
(Sec. 2.1). For example, in the case of navigating the robot for joining a group of people, actions represent points
in the space around the robot which can be several tenth of cm away from the robot. The low-level controller is
then responsible to navigate the robot to the selected point.

The reward function R for a task will be task dependent defined. For the SPRING project different ways to define
the reward function will be used. Reward functions will be composed of different components ri ∈ R that are
computed based on task features φ : S 7→ RD. Components are then combined, for example using a weighted
linear combination:

R(s) =
∑
i

wiri(φ(s)) ,
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where wi are weights for the different components. In many cases the reward components and the associated
features are hand-defined. For example, in a navigation task to approach a person one reward component rd(d) =
(d − d∗)2 provides negative reward if the robot has not yet reached the optimal distance to the target person
d∗, using as feature the distance to this person φ(s) = d. Besides hand defined reward components, SPRING
will also include reward components from existing models about naturalistic behaviors, for example from social
force models about the approach of humans [Gao et al., 2019]. Furthermore, data about the behavior of people in
similar situations to the robot will be collected. This data will be used to evaluate how similar the robot behaves
in the same situation which is given as a reward signal so that the robot is inclined to learn similar behaviors.

2 Model Predictive Control for low-level robot control

CNNs have improved state-of-the art in many pattern recognition tasks, especially in vision. In the past years,
it has been applied successfully to more complex tasks than simple pattern recognition: for example, end-to-end
learning of self-driving cars [Bojarski et al., 2016]. This raises the question of applying such end-to-end frameworks
to our goals. In SPRING, we decide to use a hybrid architecture which combines machine learning architectures
with ad-hoc non-learned constraints and goals. The reasons for this are multiple fold: first, compared to a self-
driving car scenario, in a social robotics scenario the targets are not so well defined: social interactions are often
implicit... End-to-end learning also needs huge amounts of both computing power and training data that we might
not be able to provide in the SPRING project. Furthermore, data on social interactions is hard to acquire, both
for ethical and for practical reasons. Therefore, we decide to use tradition control methods for the robot motors,
and to incorporate a priori knowledge about social conventions in the architecture of the robot.

2.1 State-space models and Model Predictive Control

Model Predictive Control (MPC) [Camacho and Alba, 2013] is a well established method for controlling various
systems for which a state-space model can be formulated. This generic control scheme can be adapted to in-
corporate learned features or penalties, as well as physical on the constraints. We will now describe the general
architecture for the MPC controller of the robot. In it’s most generic form, an MPC controller assumes that a
state-space model is provided. In the following, we will consider a discrete setting, but the framework can be
expressed in a continuous setting very similarly. Let x(t) and u(t) denote respectively the state and control at
time t. A state-space model provides a function f , such that:

x(t+ 1) = f(x(t),u(t)). (5)

We also consider constraints on the system, defined as a function g:

g(x(t)) ≥ 0,∀t ∈ N. (6)

Let us consider a target state x̄, a loss function l and a regularization function λ. Given a finite horizon N , J is
the following functional:

JN (x(0),u(0), · · · ,u(N − 1)) =

N∑
t=1

l(x(t), x̂) + λ(u(t)).

MPC consists in repeatedly applying the following scheme:

1. Estimate current state x(0);

2. Minimize JN with respect to controls u(0), · · · ,u(N − 1), subject to (5, 6);

3. Apply first control u until t = 1;

4. Go back to 1;
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The robot state is described by its joint angles (α1, α2), its position (x, y) and its orientation θ:

x(t) = (α1(t), α2(t), θ(t), x(t), y(t)).

The robot control is done in the ego frame, i.e. x(0) = y(0) = θ(0) = 0. We assume that the motors are velocity
controlled, i.e. each motor takes a target velocity as input. A simple change of coordinate changes wheel velocities
to a linear velocity v and an angular velocity ω:

u(t) = (α̇1(t), α̇2(t), ω, v).

Then the forward model is given by, given a discretization timestep T :


x(t+ 1) = x(t)− T sin(θ(t))v
y(t+ 1) = y(t) + T cos(θ(t))v
θ(t+ 1) = θ(t) + Tω
α1(t+ 1) = α1(t) + T α̇1(t)
α2(t+ 1) = α2(t) + T α̇2(t)

The model devised for the robotic base control is therefore a simple non-linear system. Due to its nonlinearity,
linear MPC control schemes cannot be used, directly, and we will need to be careful about performance issues
when using the optimization scheme described above. Nonetheless, with carefully computed derivatives, early
experiments show that the controller should be able to run in real time on the robot.

2.2 Social constraints

When people engage in conversation with one another, they organize themselves in distinctive spatial arrangement.
The knowledge about these formations, called F-formations, can be utilized by the robot. For example, a group
organized in a F-formation will share a private space, called the o-space, reserved for the group. This space should
not be occupied by a social robot [Kendon, 2010]. Another example of social constraints would be to respect
privacy spaces of people the robot is interacting with depending on the level of interaction.

These constraints should be integrated in the control of the robot, for example in the form of a velocity map, as
in the works of Truong and Ngo [2017]. This velocity map, expressed as a function v of the state of the robot, can
be integrated in the loss function described above:

l(x(t), x̂) = v(x) + a|x(t)− x̂|.

We will also integrate rewards computed from reinforcement learning techniques (see 1.4) into the loss function of
the MPC controller.

2.3 Implementation

Implementation is done using the Jax [Bradbury et al., 2018] Python library. This allows all python functions to
be JIT-compiled, and enables automatic differentiation. This is crucial to get real time performance for the MPC
controller.

Goals for the MPC controller will be determined by the different Reinforcement Learning algorithms described in
section 1.
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3 Neural architectures for the social interaction behavior

The Socially Assistive Robot in the SPRING project needs to be able to understand various individual and group
situations and take appropriate decisions, e.g. identify persons that need assistance (such as patients that have been
waiting for a long time and who might be anxious), engage in face-to-face multi-modal dialogue with a patient,
a family member, a staff member, or with a party of them, or accompany a patient across the hospital. The
architectures developed through this section will help empower the SPRING ARI robot with the skills needed for
situated interactions, i.e. interactions grounded upon the social, semantic, behavioral, and geometric representation
of the immediate environment.

A social interaction behavior system as outlined here requires components such as a social decision maker, a task
planner, and a multi-user conversational manager, to enable situated interactions with multiple users at the same
time. To allow these components to interact appropriately, a tight integration of the different input modalities
will be required, using a representation of the social state, e.g., mapping and localization, visual/audio features,
human behavior understanding.

3.1 Representation of the Social State during Human-Robot Interaction

The SPRING system will feature different network streams from various modules, e.g., semantic mapping and local-
ization (WP2), visual/audio features (WP3), human behavior understanding (WP4), robot proprioception/actions
(WP6). All of this data must be combined in a manner which allows the decision-making systems to select ap-
propriate social behaviors. In order to create robots able to move, see, hear and communicate in a social context
with multiple agents, and properly fulfil social roles and successfully execute social tasks, we need to model the
human-robot interactions into a representation of the Social State.

The Social State representation is tasked with turning the continuous stream of messages produced by the low-level
input and output components into a discrete representation of the world, the robot, and all entities in the scene,
integrating social, interaction-based, and task-based properties. This representation will exploit the the structured
cues from WP2, WP3 and WP4 to describe multi-party interactions, devise social interaction plans, and support
the robot decision making for the high level planner and the conversational manager for maximizing the robot’s
execution strategies for social interaction and communication.

Developing SARs with the capacity of performing natural and continuous interactions in a social context with
multiple agents in an ‘open-domain’ requires the robot to show the ability to track and ascribe social meaning to
its sensory information. It must explore the environment and understand what the environment affords, including
which objects, actions, events, and scene information can be extracted from the sensory data. It must also ‘know’
when to perform communicative actions and decide whom to respond to, and when and how to address one or
more people. It must track the state of each agent, and track their conversations, determining what they are
saying and to whom, where their attention is at, as well as predicting their goals, and their affective and emotional
states, etc., and on the relationship between such elements [Rato et al., 2020].

We propose to organize the representations into four domains [Garćıa et al., 2020]: 1) the external domain, with
the representation of the scene; 2) the behavior domain, with the representation of the person’s actions/behaviors;
3) the mental domain, with the representation of the person’s attributed mental states; 4) the dialogue domain,
with the representation of the conversations.

The external domain models the social scenario in a representation of the scene, e.g. where is the interaction taking
place? Who is taking part in the interaction? It models objects, places, structures, and agents and their relations
in a way that is physically grounded from the environment by the robot’s sensory information. The behavior
domain models the behavior of the users and is a representation of the people interacting in the scene, which
combines persistent data of the user for identification2, i.e., name, id, role, and dynamic data of the user behavior,
i.e., current activity, location, status. The mental domain which models the mental state attributions of the users
is a representation of the internal state of the users – it tracks the intentions and beliefs of participants of the
interaction, as well as predictions of the goals, motivations and emotional states, etc. The model of the dialogue
state is a representation of the conversation, tracking what has been said and by whom, the intents expressed, the
entities mentioned, and the topics of conversation during interactions among multiple users and the robot.

For the initial version of the Social State (see Table 1) the state is represented as a list of properties, from the four
previously mentioned domains plus the internal robot state.

2Assuming consent of the user to do so.
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Table 1: Social Scene Representation.

Feature Signal Domain Description
locale localization Scene Where the interaction is taking place.
agents detection & tracking Scene List of agents in the scene.
objects semantic segmentation Scene List of (salient) objects in the interaction.
rooms semantic mapping Scene List of places.
scene scene-graph Scene Graph/map of the scene.
ID identification behavior ID of the person.
groupID identification behavior Group they belong to.
role behavior analysis behavior People role depending on interaction context.
activity behavior analysis behavior Track current activity.
attention gaze tracking behavior Track focus of attention.
location localization behavior Track current location.
purpose intention recognition Mental Agent’s main goal.
currentTarget intention recognition Mental Goal pursued (by the agent) at present.
emotionState behavior analysis Mental Estimation of agent affective expression.
motivation behavior analysis Mental Condition of the agent, i.e, engaged, waiting, etc.
speakerID identification Dialogue ID of the speaker.
listenerIDs identification Dialogue IDs of the listeners.
intent NLU Dialogue The intent of the speaker.
entities NLU Dialogue Entities in the dialogue.
topic NLU Dialogue The current topic/task.
onset ASR Dialogue When the dialogue starts.
transcript ASR Dialogue Transcript of the dialogue.
robotLocation localization Internal Robot current location.
robotAttention robot gaze Internal Robot current focus of attention.
lastAction robot behavior Internal Action executed by the robot.
robotGoal robot planner Internal Goal pursued (by the robot) at present.
interactTarget robot planner Internal Person(s) robot is interacting with.

3.2 Situated Social Decision Making

Managing situated interactions, as in the use case of SPRING, requires systems that can reason about their
surroundings and interact in a natural manner in open-world, physically situated settings of human interactions,
leveraging both the dialogue and social-physical context when making decisions [Bohus and Horvitz, 2019]. A
first problem that must be dealt with is opening a communication channel. Situated interaction systems generally
need to reason about and manage engagement, i.e., the process by which we initiate, maintain and terminate
conversations, deciding who they are interacting with, and when [Bohus and Horvitz, 2009]

To equip social robots with the ability to detect a person who is willing to interact, in the initial stage a basic
decision making system will be adopted from Romeo et al. [2019], that is able to decide if a person, in the field
of view of the robot, is looking to initiate a conversation with the robot. This has been integrated with the the
initial task scheduler and the initial conversational system of WP5 [Part et al., 2021] to create a first closed loop
system for high-level robot control, able to use visual data to select a person to talk to and start a conversation.

The engagement decision-making network in Romeo et al. [2019] (see Figure 1), comprises 9 layers in total,
excluding the input layer. The first convolutional layer takes as input grayscale images from the robot cameras,
resized to 198 × 198 pixels, and applies 16 filters 9 × 9 with stride 3. The second and the third layer apply 32 and
64 filters 5 × 5 respectively, with stride 1. Each convolutional layer is followed by a rectifier linear unit (ReLU)
function and a max pooling layer with pool size 2 × 2 and stride 2. The last convolutional-max pooling layer is
followed by a fully-connected layer of 256 units. The final output layer is a fully-connected linear layer of 3 units,
giving as output the probabilities for each of the 3 available actions to be the right one to be chosen in the current
situation. The choice of the network is the action associated with the label having the highest probability for the
input image.

The available actions are: (i) wait, not doing anything, for the cases in which no-one was detected as interested in
engaging; (ii) start the interaction, addressing the person identified as willing to start the interaction with a direct
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Figure 1: Architecture of the CNN (from Romeo et al. [2019]): 3 convolutional layers, each followed by a corresponding max
pooling layer, and 2 fully-connected layers. The first convolutional layer applies 16 filters 9x9 with stride 3. The second
and third apply 32 and 64 5x5 filters respectively, with stride 1. The last convolutional layer is followed by a dense layer
of 256 units, after which a dropout layer is added. After applying the dropout, the output layer is a fully-connected linear
layer of 3 units.

question, e.g “Do you like music?” or “Let’s talk about sport, do you prefer football or basketball?”, etc.; (iii)
call for attention, a neutral action to take, when undecided to start the interaction, the robot will make a small
gesture, e.g. ’move close’, ’small wave’, ’head nod’, etc., to test whether the user is interested to engage. The start
of an interaction decision-making process follows these steps: look at the scene happening in front of the robot;
extract grayscale frames, using the camera on the forehead of the robot, and given as input to the CNN; from the
output of the CNN, classifying the last 15 frames with respect to the actions that the robot could take (wait, start
the interaction and call for attention), decide the action to perform, chosen as the higher average score from the
last 15 frames.

The architecture in Romeo et al. [2019] uses nonverbal bodily social signals to determine engagement in human-
human interactions, with a CNN in its decision-making process. Further work can explore broadening the decision-
making capabilities, of the interaction, and extend it for multiple user, with a Reinforcement Learning (RL)
component. Since interaction is a key component in both RL and social robotics, formulating social interactions
with physically embodied social robots as sequential decision-making tasks can be a suitable approach which is
gaining increasing attention in the robotics community.

Q-learning is the most commonly used RL method in social robotics. In Papaioannou et al. [2017a] an agent was
trained using the standard Q-learning algorithm with simulated users and tested with the Pepper robot to assist
visitors of a shopping mall by providing information about and directions to the shops, and current discounts in
the shops among other things. It combines task-based and chat-style dialogue modalities in a scalable approach,
allowing to easily enrich the used feature vector by including information from the robot’s sensors in addition to
verbal information. Weber et al. [2018] incorporated social signals in the learning process, using a two-dimensional
vector containing probabilities of laughs and smiles for state representation, for a robot to adapt its sense of humor
by using Q-learning with a linear function approximator.

Social interactions require features from high dimensional signals, as discussed in 3.1. We will explore Deep
Reinforcement Learning approaches for scaling Reinforcement Learning problems with high-dimensional state
spaces. Qureshi et al. [2016] utilizes deep Q-learning to enable a robot to learn social interaction skills from
experience interacting with people in more complex scenarios where the robot can be approached by a group of
people who are either willing or not willing to interact with it. They proposed a Multimodal Deep Q-Network
(MDQN) to enable a robot to learn human-like interaction skills through a trial and error method with aim of
enabling a robot with the ability to learn how to greet people. Their proposed multimodal DQN consists of two
identical streams of CNN for action-value function estimation, one for grayscale frames and another for depth
frames. The work in Qureshi et al. [2017] applied a variation of DQN, the Multimodal Deep Attention Recurrent
Q-Network (MDARQN), to the same scenario. Here a recurrent attention model was used, which enabled the
Q-network to focus on certain parts of the input image, (see Figure 2). Two identical Q-networks were used (one
for grayscale frames and one for depth frames). Each Q-network consisted of convnets, a Long Short-term Memory
(LSTM) network, and an attention network. Each of the streams of the MDARQN model were trained by using the
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back-propagation method. The outputs from the two streams were normalized separately and averaged to create
output Q-values of MDARQN. Another study using a social robot and DQN was presented in Cuayáhuitl [2020]
for efficiently training a humanoid robot to carry out joint multimodal activities together with humans that involve
speaking, listening, gesturing, and learning. They used a CNN for recognizing game moves, i.e., hand-writing on
the grid. These visual perceptions and the verbal conversations of the participant were given as an input to their
modified DQN. The proposed DQN algorithm refines the action set at each step to allow the agent to learn to
infer the effects of its actions (such as selecting the actions that lead to winning or to avoid losing). The reward
consisted in predefined numerical values based on the performance of the robot in the game.

Figure 2: Multimodal Deep Attention Recurrent Q-Network (from Qureshi et al. [2017]): two Q-networks streams, each
stream consists of three neural models. 1) Convnets; 2) Long Short-term Memory (LSTM) network; and 3) Attention
network (G). The output Q-values from each Q-network stream are fused together for taking a greedy action.

We will explore data-driven machine learning approaches for learning social human-robot interaction strategies,
and integrate the different SPRING input streams.

Keizer et al. [2013] uses human-human and human-robot data that was manually labeled to learn low-level sub-
modules for how a bartender robot should interact with multiple customers, e.g., classifying user engagement, or
saying pre-defined utterances.

The approach in Nanavati et al. [2020] autonomously learns interaction logic in a one-to-many shopkeeper-customer
scenario. The proposed system utilizes neural networks (see Figure 3) to first learn, through an attention network,
which customer actions are important to respond to and then learn via an Interaction network how the shopkeeper
should respond to those important customer actions. The data-driven pipeline takes in low-level data of a human
shopkeeper interacting with multiple customers and extracts high-level actions from that data, by first learning
who to pay attention to (Attention Network), and then learning how to respond to that customer (Interaction
Network). To train the Attention Network, they used labels from a Causal Inference Network that learned which
customer most likely caused a shopkeeper action.
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Figure 3: Neural Network system (from Nanavati et al. [2020]): (left) Attention Network and Interaction Network to learn
shopkeeper-customer interaction logic. (right) Causal Inference Network to learn the causal relation between customer and
shopkeeper actions.

For the multi-party interaction case of SPRING, related approaches will be explored, using Deep RL models to
train, from human interaction data, an agent to learn the high-level multi-party interaction logic.

4 Design of neural architectures for conversational systems

There are several relevant routes for developing neural components within the overall SPRING conversational
system. The initial point to note here is that pure neural architectures for conversational systems, i.e. the recent
trend in massive pre-trained Language Models which map input word sequences to output word sequences, in a
similar manner to Machine Translation systems, e.g. [Zhang et al., 2020, Radford et al., 2019, Brown et al., 2020],
are not in themselves suitable for deployed real-world applications. Firstly, there are many reported examples
[Dusek et al., 2020] of such systems, being inconsistent, “hallucinating” information which can be incorrect, making
errors of deletion, and substitution, and being repetitive. Their outputs are also generally not conditioned on
external representations such as knowledge bases or task representations, as would be required for a deployed HRI
system, although there is current research in these areas. Moreover, there are serious ethical issues around the use
of neural response generation systems, where biases in training data have been shown to lead to problematic system
output including abusive language, hate speech, gender bias, microaggressions, dehumanization, and various socio-
political framing biases that are prevalent in language data Bender et al. [2021]. There have been some attempts
to remedy this [Xu et al., 2020].

These deficiencies render stand-alone neural conversational / response generation systems inappropriate as solu-
tions to conversational AI for HRI, at least for now. Rather, neural models of various types can be used within
larger more semantically controllable conversational AI systems in ways which we describe below.

For example, the current Alana system [Curry et al., 2018, Papaioannou et al., 2017b,c], which the SPRING
conversational system extends, already uses neural methods for intent classification and system utterance ranking
[Shalyminov et al., 2018]. These components can be extended and further developed to cover the SPRING use-cases
and in particular the challenges of multi-user conversation.

There are also several additional directions to explore for the neural conversational architecture in SPRING:

• 1) Deep Reinforcement Learning for action selection in multi-modal multi-user social situations.
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• 2) Transformer models to further support unscripted open-domain conversation and chit-chat (e.g. [Zhang
et al., 2020, Radford et al., 2019, Brown et al., 2020]),

• 3) Transfer Learning for bootstrapping task-based systems from small data. [Shalyminov et al., 2019]

• 4) Multimodal deep learning for vision and language grounding in HRI [Suglia et al., 2020a].

• 5) Neural methods for NLU, in particular for robust frame-semantic parsing. [Vanzo et al., 2019]

We will briefly elaborate on each of these research directions.

4.1 Deep Reinforcement Learning for multi-modal social situations

As discussed in section 3.2, decision-making for multimodal social situation involves a very high-dimensional state
space. In contrast to previous spoken dialogue systems which had task-based state spaces generated by a discrete
few slots and values (usually modelled as Markov Decision Processes), or with some continuous dimensions (such
as ASR confidence scores in POMDP systems) Rieser and Lemon [2011], conversational systems which have to take
into account multimodal signals from multiple users will have much larger state spaces, formed of combinations
of continuous and discrete variables. Moreover, where states representing utterance meanings are formed using
word-embeddings (as in current neural approaches to dialogue), state spaces again become very large and the
decision-making problem becomes intractable without some form of state-space compression [Crook and Lemon,
2011]. Deep RL methods provide a useful approach in such contexts because they can effectively learn a useful
compression of the state space while optimizing action selection for a particular reward function (ie. a goal
specification).

Deep RL has been used by Li et al. [2016] to optimize an open-domain chat-based dialogue system, where reward
was given for ease of answering, Information Flow, and semantic coherence – each of which is a function of utterance
embeddings (e.g. Information Flow penalizes semantic similarity between utterances of the agent, so as to avoid
repetitive content). Other uses of Deep RL are in utterance selection from an ensemble of bots which produce
multiple possible responses in parallel Shalyminov et al. [2018] .

In the multimodal, social, multi-user case of SPRING, Deep RL methods can be used in similar ways. However,
the computational resources needed to train such models may be prohibitive, so any use of Deep RL methods will
need to be carefully targeted to specific decision problems so that the action space for exploration is reduced.

4.2 Transformer models for open-domain and task-based conversation

Much recent attention has focused on Transformer-based models such as Zhang et al. [2020], Radford et al.
[2019], Brown et al. [2020], which are able to produce natural and fluent output based on previous conversational
turns. However, as noted above, they encounter problems of semantic consistency, repetition, coherence, and
ethical compliance. For these reasons we will explore using such bots as a “fall-back” when other parts of the
conversational system have no response to the user’s input. This is likely to be especially useful for social ‘chit-
chat’. A related avenue to explore is the semantic parsing of the output of such neural models, so that the overall
system maintains its representation of what has been said, for example what topics and entities a neural model
has introduced into a conversation. Finally, we will explore to what extent the output of such a model can be
conditioned on the conversational context, for example the tasks and objects under discussion [Wen et al., 2015,
Peng et al., 2020].

4.3 Transfer Learning for bootstrapping task-based systems

Related to the above discussion, recent work has explored Transfer Learning and approaches which take pre-trained
neural Language Models such as [Radford et al., 2019, Brown et al., 2020] and then fine-tune them for specific
tasks using only small amounts of data in a target domain [Shalyminov et al., 2019, Peng et al., 2020, Shalyminov
et al., 2020]. This is sometimes referred to as ‘bootstrapping’ or ‘few-shot’ learning of a new task-based system,
since it creates a new system from a few example conversations in the target task-domain.

For the SPRING project, it will be useful to consider whether new tasks in the hospital reception domain (for
example patient check-in) can be developed using such Transfer Learning methods, based on data collected in the
project.
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4.4 Multimodal deep learning for vision and language grounding

Another deficiency of current neural models is that their representations of word-meaning are not grounded in
visual information. This is crucial for HRI in cases where humans wish to talk about or refer to objects in
virtue of their visual properties such as color, shape etc. as well as to hold coherent conversations with robots in
visual/spatial situations where objects and their relations are critical for task success (e.g. directions to a place
or object). In this regard, there has been much recent work on ‘visual dialogue’ tasks where grounded language
understanding and generation in context is paramount Suglia et al. [2020a,b, 2021]. For SPRING, it will be useful
to explore to what extent we can use more visually grounded semantic representations of utterances within the
multimodal dialogue context developed in the system. Our recent video demonstration at HRI 2021 [Part et al.,
2021] 3 is a step in this direction as it uses deep learning for object recognition to create spatial representations
which are used to answer questions from the user.

4.5 Neural methods for Natural Language Understanding (NLU)

The need for handling complex and noisy linguistic phenomena which might result in poor recall is particularly
evident when dealing with spoken language, which is rich in ungrammatical sentences. To overcome these issues
and to handle complex sentences while providing richer semantic representations, frame semantics using deep
learning architectures can be employed Vanzo et al. [2019].

HERMIT Vanzo et al. [2019] captures the user intent using semantic parsing Wilks and Fass [1992] where semantic
parsing is the process of extracting structured meaning representations from Natural Language inputs. Frame
Semantics Fillmore [1985] offers a theory of meaning representation whose basic object is the semantic frame,
a conceptual structure representing a situation of the world conveyed in a sentence. Each semantic frame is
characterized by a set of frame elements, which are the linguistic arguments enriching the main meaning expressed
by the related frame. For example, the sentence “Where can I find a chair?” expresses a Locating frame,
evoked by the verb find which plays the special role of Lexical Unit. I and a chair are the Perceiver and
Sought Entity frame elements, respectively. The HERMIT parsing process is modelled as a cascade of three
tasks, each of which is modelled as a Sequence-to-Sequence problem, where a task-specific label is assigned to each
token of the sentence according to the IOB2 notation Ramshaw and Marcus [1995]. The network is composed of
three blocks of encoding layers, one per task. The first encoding step of each task is realized with a Bi-LSTM
Schuster and Paliwal [1997], while an additional Self-Attention layer Li et al. [2018] is added. This latter layer
enriches the encoded representation with latent relationships between the words composing a sentence. The final
sequence of labels for each task over a sentence is obtained through a Conditional Random Field layer Lafferty et al.
[2001] fed with the previous encoding. As well as obtaining state-of-the-art results on the frame-semantic parsing
tasks, this system has also been shown to work well on automatically and grammatically incorrect translated
sentences (for example translated from Finnish to English) using Machine Translation approaches.

For the SPRING project it will be useful to explore the possibility of using a related approach especially when
dealing with translations from French to English.
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